Accelerated Computing

Jun Makino Interactive Research Center of Science Tokyo Institute of Technology

IEEE Cluster 2011 Sept 28, 2011

Satoshi's three questions

- 1. What does accelerated computing solve best? — (Physics) simulation and visualization.
- 2. What do you see as the current biggest technical challenge?

— Initial design cost of large LSIs, which effectively terminated academic efforts to make competitive chips.

Research in academia is essential for the advance of the field.

- 3. Do you believe that accelerated computing will become mainstream?
 - In HPC, and in graphics, yes.

Talk structure

- Brief history of GRAPE/GRAPE-DR
- Future of accelerators

BTW, 6 times, not 7 (95, 96, 99, 00, 01, 03).

Brief history of GRAPE(-DR)

- Basic concept
- GRAPE-1 through 6
- GRAPE-DR

Basic concept (As of 1988)

- With astrophysical *N*-body simulation, almost all calculation goes to the calculation of particle-particle interaction.
- This is true even for fast $O(N \log N)$ or O(N) schemes
- A pipelined hardware which calculates the particle-particle interaction can accelerate overall calculation.
- Original Idea: Chikada (1988)

Accelerated Computing two decades ago

GRAPE-1 to **GRAPE-6**

GRAPE-1: 1989, 308Mflops GRAPE-4: 1995, 1.08Tflops GRAPE-6: 2002, 64Tflops

Performance history

Since 1995 (GRAPE-4), GRAPE has been faster than general-purpose computers.

Development cost was around 1/100. Performance per Watt was around 100.

GRAPE-DR: Why and what?

• Chip development cost becomes too high.

Year	Machine	Chip initial cost	process
1992	GRAPE-4	200K\$	$1 \mu { m m}$
1997	GRAPE-6	1M\$	$250 \mathrm{nm}$
2004	GRAPE-DR	4M\$	90nm
2012?	GDR2?	> 10M\$	28nm?

How we can continue?

Widen application to justify the initial cost.

Processor architecture

- Float Mult
- Float add/sub
- Integer ALU
- 32-word registers
- 256-word memory
- communication port

GRAPE-DR cluster system

(As far as I know) Only processor designed in academia listed in Top500 in the last 10 years.

Little Green 500, June 2010

Green500 Rank	MFLOPS/W	Site*	Computer*	Total Power (kW)
1	815.43	National Astronomical Observatory of Japan	GRAPE-DR accelerator Cluster, Infiniband	28.67
2	773.38	Forschungszentrum Juelich (FZJ)	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54
2	773.38	Universitaet Regensburg	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54
2	773.38	Universitaet Wuppertal	QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus	57.54
5	536.24	Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw	BladeCenter QS22 Cluster, PowerXCell 8i 4.0 Ghz, Infiniband	34.63

#1: GRAPE-DR, #2: QPACE: German QCD machine#9: NVIDIA Fermi

Transistor count

Chip	Total Trs	SP operations	Trs/op	Ratio
GRAPE-6	8M	400	20k	1
GRAPE-DR	$200\mathrm{M}$	1024	200k	10
Intel LRB	$1.7\mathrm{B}$	1024?	$1.7 \mathrm{M}?$	85?
Intel Westmere	$1.2\mathrm{B}$	48	$25\mathrm{M}$	1250

Not all accelerators are created equal

Several important dimensions:

- Application-specific/General-purpose
- SIMD/MIMD
- Local Memory/Cache
- Narrow/Wide external memory

My view

One should go for: Application-specific, SIMD, Local Memory, and Narrow external memory.

Reason: Gives you the best performance

- for the same number of transistors
- for the same power consumption

It can beat other approaches by two orders of magnitudes.

But: initial cost has become too high. Need some compromisation.

Solution?

- FPGA? Always "the future of HPC" for the last quarter century
- Structured ASIC? Maybe, if manufacturers survive.
- Programmable SIMD processor? Yes, if you can raise fund.

GRAPE-DR is the only processor designed in academia which appeared in Top 500 list in the last 10 years (Tsukuba CP-PACS in 1996)

Comparison with other works

(From Nov 10 Top 500 list)

Accelerator	CPU	Performance	Acceleration
/System	/Clock	/Efficiency	over host
Fermi	Xeon 6c	$2.566 \mathrm{PF}$	2.83
Tianhe-1A	$2.93 \mathrm{GHz}$	54.4%	
Fermi	Xeon 6c	$1.192 \mathrm{PF}$	6.13
Tsubame 2.0	2.93(3.19?) GHz	$\mathbf{53.5\%}$	
GRAPE-DR	Core i7 4c	$37.4\mathrm{TF}$	10.6
	$3 \mathrm{GHz}$	$\mathbf{53.2\%}$	

Chip architecture

Result output port

- 32 PEs organized to "broadcast block" (BB)
- BB has shared memory. Various reduction operation can be applied to the output from BBs using reduction tree.
- Input data is broadcasted to all BBs.
- "Solved" data movement problem: Very small number of long wires and off-chip IO.

Chikada's idea (1988)

+, -, ×, 2 築は1 operation, -1.5 築は多項式近似でやるとして10 operation 位に相当する. 総計24operation.

客operation の後にはレジスタがあって、全体がpipelineになっているものとする。 「待ち合わせ」は2乗してMと掛け算する間の時間ズレを補正するためのFIFO(First-In First-Out memory)。 「Σ」は足し込み用のレジスタ、N回足した後結果を右のレジスタに転送する。

図2.N体問題のj-体に働く重力加速度を計算する回路の概念図.

- Hardwired pipeline for force calculation (similar to Delft DMDP)
- Hybrid Architecture (things other than force calculation done elsewhere)