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Talk structure

e Hardware

— GRAPE machines
— GRAPE-DR

® Science
— “Dwarf galaxy problem”
e Algorithms

— Efficiency limit of individual timestep
algorithm



Short history of GRAPE

e Basic concept

e GRAPE-1 through 6



Basic concept

e With N-body simulation, almost all calculation
goes to the calculation of particle-particle
interaction.

e This i1s true even for schemes like Barnes-Hut
treecode or FM M.

e A simple hardware which just calculates the
particle-particle interaction can greatly accelerate
overall calculation.



GRAPE-1(1989)

e “Mixed preci-
sion”.

e ~ 100 IC chips
e ~ USD 2,000
e 240MfMops

o IEEE-488
interface,
~100KB/s



GRAPE-4(1995)

e 1.1 Tflops peak

e 36 boards each
with 48 chips

e 640 Mflops per
chip (20 oper-
ations, 32MHz
clock)

e LSI logic 1um



GRAPE-6(2001)

B chips
W 64 processor
-' boards

S R 16 hosts



Processor LSI

e 0.25 pum design rule

(Toshiba TC-240,
1.8M gates)

e 90 MHz Clock

e 6 pipeline processors

e 31 Gflops / chip



Comparison with a recent Intel
processor

GRAPE-6 Intel Woodcrest (Xeon 5160)

Design rule  250nm 65nm
Clock 90MHz 3GHz
Peak speed 32.4GfHops 24Gflops
Power 10W 80 W

Perf/W 3.24GHops 0.3 Gflops
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Problem with GRAPE approach

e Chip development cost becomes too high.

Year Machine Chip Initial Cost process

1992 GRAPE-4 200K$ 1pm

1997 GRAPE-6 1M$ 250nm
2004 GRAPE-DR 4M$ 90nm
20087 GDR?27 ~ 10M$ 65nm?

Initial cost should be 1/4 or less of the total budget.
How we can continue?



Next-Generation GRAPE
— GRAPE-DR

e Planned peak speed: 2 Pflops

e New architecture — wider application range than
previous GRAPEs

e primarily to get funded
e No force pipeline. SIMD programmable processor

e Planned completion year: FY 2008 (early 2009)



Processor architecture
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Chip structure
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Why we changed the architecture?

e To get budget (IN-body problem is too narrow...)
e To allow a wider range of applications

— Molecular Dynamics
— Boundary Element method

— Dense matrix computation

— SPH
e To allow a wider range of algorithms

— FMM
— Ahmad-Cohen



Comparison with FPGA

e much better silicon usage (ALUs in custom
circuit, no programmable switching network)

e (possibly) higher clock speed (no programmable
switching network on chip)

e easier to program (no VHDL necessary; assembly
language and compiler instead)



Comparison with GPGPU

e Significantly better silicon usage

e Higher cost per silicon area... (small production
quantity)

e Good implementations of Hermite scheme on
GPGPU exist



How do you use it?

e GRAPE: The necessary software is now ready.
Essentially the same as GRAPE-6.

e Matrix etc ... RIKEN/NAOJ will do something
e New applications:

— Primitive Compiler available

— For high performance, you need to write the
kernel code in assembly language



Primitive compiler

(Nakasato 2006)

/VARI xi, yi, zi, e2;

/VARJ xj, yj, zj, mj;

/VARF fx, fy, fz;

dx = X1 - XJ;

dy = yi1 - ¥J;

dz = zi - zj;

r2 = dx*dx + dy*dy + dz*xdz + e2;

e Assembly code

e Interface/driver

r3i= powm32(r2); functions

ff = mj*r3i,;

fx += ff*xdx; are generated from
fy += ffx*dy; this ”high-level

fz += ff*xdz; description”.



Interface functions

struct SING_hlt_structO{
double x1i;
double y1i;
double zi;
double e2;
s
int SING_send_i_particle(struct SING_hlt_structO *ip,
int n);

int SING_send_elt_dataO(struct SING_elt_structO *ip,
int index_in_EM);
int SING_get_result(struct SING_result_struct *rp);

int SING_grape_run(int n);



Development status

Sample chip delivered May 2006



Chip layout
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Prototype board

2nd prototype board. (Designed by Toshi Fukushige)
Difference from the 1st one:
PCI-Express x8 interface

On-board DRAM
Designed to run real applications



Preliminary data for production

board

e Design finished, prototype board in Oct 2007
e 4 Chips on a board (2Tflops peak)

e PCI-Express x16 interface

e 300W...

e Early 2009....

e 5-10K USD



Science: Dwarf galaxy problem

(Ishiyama et al arXiv:0708.1987)

Cumulative number of halos
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Simulated cluster :

Moore et al 1999

e Too many
CDM subhalos
in galaxy-sized
halos

e Or too few
dwarf galaxies

e SCDM

® re-simulation
method



Our simulation

e Unbiased sample of ALL halos in one simulation
box

® TreePM code on GRAPE-6A cluster
e 5123 particles
e 21.4 Mpc cube, LCDM



Snapshot




Result
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e Large
variation in
number of
subhalos

e The richest
ones agree
with Moore’s
result

The poorest ones are within a factor of two with

observations

— Dark CDM subhalos are not necessary



Poor and Rich halos

L=2.00Mps

A poor halo
at z=3 (left)
and 0 (right)

A rich halo at
z=3 (left)
and 0 (right)



Reason for large variation

“Field” halos have fewer subhalos than “cluster”
halos

e form earlier: subhalos tidally stripped strongly

e subhalos born closer to the center of the parent
halo

® less external tidal field: subhalos have smaller
orbital angular momentum



Implication to globular cluster
formation scenario

e Many massive CDM halos (V. > 0.1V,,) were
formed, but they suffered very strong tidal
stripping.

e If they have developed compact stellar nuclei
before stripping starts, stripped remnants would
look like massive globular clusters.



Limit of individual timestep
algorithm

—
. Basic idea of individual
. timestep:
. Particles should have

the timestep just
enough to resolve their
own orbits.

What happens to the forces from short-timescale
particles to long-timescale particles?




What’s happening

They are integrated in a completely wrong way!
PAPPLLLATT

Time

e Forces do have rapidly changing components

e If the timestep is large, forces are sampled
“randomly” (if the orbit is not periodic)



When does this happen?

e When the orbital timescale of particles in the
core becomes less than the timestep of typical
particles in the cluster.

e Roughly speaking: If r. < r, N~ 1/3

e Just before bounce: r. ~ r,/N K r,N—1/3




Does this really matter?

In the case of a singular isothermal cusp

e The velocity change due to this error can be

comparable to two-body relaxation (smaller by
N1/6),

e Reduction of timestep helps, but only as At!®

e The only way to suppress this error completely is
to reduce the timesteps of all particles to less
than the core crossing time



Impact on the calculation cost

e Hopetfully not so severe for normal star clusters

— the fraction of time for which the core size is
small is small
— Mass spectrum makes the core size larger

e Any system with central massive BH might be
problematic.



Possible solutions

e Individual timestep for interactions, not particles
(Nitadori’s talk)

e Time-averaged force from particles in the central
region

Time-symmetric individual timestep (JM et al 2006)
might help....



Summary

e GRAPE-DR, with programmable processors, will

have wider application range than traditional
GRAPE:s.

e Second prototype (close to production version) is
just arrived.

e Commercial version should be ready by...
sometime around the end of this year.

e Peak speed of a card with 4 chips will be 2 Tflops



6th and 8th-order Hermite schemes

e fourth-order Hermite scheme is not widely used.

e For many problems, higher order schemes can be
advantageous.

¢ GRAPE-DR (unlike previous GRAPESs) can be
used with whatever schemes.



Two different ways to achieve higher
orders

e Use previous timesteps

e Calculate 2nd (for 6th) and 3rd (for 8th) time
derivatives directly.

The latter approach

® is easier to program.
e has much smaller error coefficient

e can be made time-symmetric



Acceleration and derivatives
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Acceleration and derivatives (cont’d)
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Predictor and corrector

Predictors: Usual polynomial form.

Caution: need to predict acceleration (and jerk for
8th order) and need to use one previous value(s) to
construct higher-order terms.

Correctors:
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Timestep criterion

‘“(GGeneralization” of the standard one:

1a©®||a@| + [a®z /PO

At = L |a,(P—3)||a,(P—1)| -+ |a,(p—2)|2

seems to work fine.



Numerical result

o N = 1024,
Plummer model,
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