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Talk structure

• Hardware

– GRAPE machines

– GRAPE-DR

• Science

– “Dwarf galaxy problem”

• Algorithms

– Efficiency limit of individual timestep

algorithm



Short history of GRAPE

• Basic concept

• GRAPE-1 through 6



Basic concept

• With N -body simulation, almost all calculation

goes to the calculation of particle-particle

interaction.

• This is true even for schemes like Barnes-Hut

treecode or FMM.

• A simple hardware which just calculates the

particle-particle interaction can greatly accelerate

overall calculation.



GRAPE-1(1989)

• “Mixed preci-

sion”.

• ∼ 100 IC chips

• ∼ USD 2,000

• 240Mflops

• IEEE-488

interface,

∼100KB/s



GRAPE-4(1995)

• 1.1 Tflops peak

• 36 boards each

with 48 chips

• 640 Mflops per

chip (20 oper-

ations, 32MHz

clock)

• LSI logic 1µm



GRAPE-6(2001)

64 Tflops peak

2048 processor

chips

64 processor

boards

16 hosts



Processor LSI

• 0.25 µm design rule

(Toshiba TC-240,

1.8M gates)

• 90 MHz Clock

• 6 pipeline processors

• 31 Gflops / chip



Comparison with a recent Intel
processor

GRAPE-6 Intel Woodcrest (Xeon 5160)

Design rule 250nm 65nm

Clock 90MHz 3GHz

Peak speed 32.4Gflops 24Gflops

Power 10W 80 W

Perf/W 3.24Gflops 0.3 Gflops



Performance history

Since 1995

(GRAPE-4),

GRAPE has been

faster than

general-purpose

computers.

Development cost

was around 1/100.

Should we just

continue?



Problem with GRAPE approach

• Chip development cost becomes too high.

Year Machine Chip Initial Cost process

1992 GRAPE-4 200K$ 1µm

1997 GRAPE-6 1M$ 250nm

2004 GRAPE-DR 4M$ 90nm

2008? GDR2? ∼ 10M$ 65nm?

Initial cost should be 1/4 or less of the total budget.

How we can continue?



Next-Generation GRAPE
— GRAPE-DR

• Planned peak speed: 2 Pflops

• New architecture — wider application range than

previous GRAPEs

• primarily to get funded

• No force pipeline. SIMD programmable processor

• Planned completion year: FY 2008 (early 2009)



Processor architecture
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Chip structure
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Collection of small

processors.

512 processors on

one chip

500MHz clock

Peak speed of one

chip: 0.5 Tflops (20

times faster than

GRAPE-6).



Why we changed the architecture?

• To get budget (N -body problem is too narrow...)

• To allow a wider range of applications

– Molecular Dynamics

– Boundary Element method

– Dense matrix computation

– SPH

• To allow a wider range of algorithms

– FMM

– Ahmad-Cohen

– ...



Comparison with FPGA

• much better silicon usage (ALUs in custom

circuit, no programmable switching network)

• (possibly) higher clock speed (no programmable

switching network on chip)

• easier to program (no VHDL necessary; assembly

language and compiler instead)



Comparison with GPGPU

• Significantly better silicon usage

• Higher cost per silicon area... (small production

quantity)

• Good implementations of Hermite scheme on

GPGPU exist



How do you use it?

• GRAPE: The necessary software is now ready.

Essentially the same as GRAPE-6.

• Matrix etc ... RIKEN/NAOJ will do something

• New applications:

– Primitive Compiler available

– For high performance, you need to write the

kernel code in assembly language



Primitive compiler
(Nakasato 2006)

/VARI xi, yi, zi, e2;

/VARJ xj, yj, zj, mj;

/VARF fx, fy, fz;

dx = xi - xj;

dy = yi - yj;

dz = zi - zj;

r2 = dx*dx + dy*dy + dz*dz + e2;

r3i= powm32(r2);

ff = mj*r3i;

fx += ff*dx;

fy += ff*dy;

fz += ff*dz;

• Assembly code

• Interface/driver
functions

are generated from
this ”high-level
description”.



Interface functions

struct SING_hlt_struct0{

double xi;

double yi;

double zi;

double e2;

};

int SING_send_i_particle(struct SING_hlt_struct0 *ip,

int n);

...

int SING_send_elt_data0(struct SING_elt_struct0 *ip,

int index_in_EM);

...

int SING_get_result(struct SING_result_struct *rp);

int SING_grape_run(int n);



Development status

Sample chip delivered May 2006



Chip layout

• 32PEs in 16

groups

• 18mm by 18mm



Prototype board

2nd prototype board. (Designed by Toshi Fukushige)

Difference from the 1st one:

PCI-Express x8 interface

On-board DRAM

Designed to run real applications



Preliminary data for production
board

• Design finished, prototype board in Oct 2007

• 4 Chips on a board (2Tflops peak)

• PCI-Express x16 interface

• 300W...

• Early 2009....

• 5-10K USD



Science: Dwarf galaxy problem

(Ishiyama et al arXiv:0708.1987)

Moore et al 1999

• Too many

CDM subhalos

in galaxy-sized

halos

• Or too few

dwarf galaxies

• SCDM

• re-simulation

method



Our simulation

• Unbiased sample of ALL halos in one simulation

box

• TreePM code on GRAPE-6A cluster

• 5123 particles

• 21.4 Mpc cube, LCDM



Snapshot



Result

• Large

variation in

number of

subhalos

• The richest

ones agree

with Moore’s

result

The poorest ones are within a factor of two with

observations

= Dark CDM subhalos are not necessary



Poor and Rich halos

A poor halo

at z=3 (left)

and 0 (right)

A rich halo at

z=3 (left)

and 0 (right)



Reason for large variation

“Field” halos have fewer subhalos than “cluster”

halos

• form earlier: subhalos tidally stripped strongly

• subhalos born closer to the center of the parent

halo

Cluster Field

• less external tidal field: subhalos have smaller

orbital angular momentum



Implication to globular cluster
formation scenario

• Many massive CDM halos (Vc > 0.1Vp) were

formed, but they suffered very strong tidal

stripping.

• If they have developed compact stellar nuclei

before stripping starts, stripped remnants would

look like massive globular clusters.



Limit of individual timestep
algorithm

Basic idea of individual

timestep:

Particles should have

the timestep just

enough to resolve their

own orbits.

What happens to the forces from short-timescale

particles to long-timescale particles?



What’s happening

They are integrated in a completely wrong way!

Time

• Forces do have rapidly changing components

• If the timestep is large, forces are sampled

“randomly” (if the orbit is not periodic)



When does this happen?

• When the orbital timescale of particles in the

core becomes less than the timestep of typical

particles in the cluster.

• Roughly speaking: If rc ¿ rhN−1/3

• Just before bounce: rc ∼ rh/N ¿ rhN−1/3

rc



Does this really matter?

In the case of a singular isothermal cusp

• The velocity change due to this error can be

comparable to two-body relaxation (smaller by

N1/6).

• Reduction of timestep helps, but only as ∆t1.5

• The only way to suppress this error completely is

to reduce the timesteps of all particles to less

than the core crossing time



Impact on the calculation cost

• Hopefully not so severe for normal star clusters

– the fraction of time for which the core size is

small is small

– Mass spectrum makes the core size larger

• Any system with central massive BH might be

problematic.



Possible solutions

• Individual timestep for interactions, not particles

(Nitadori’s talk)

• Time-averaged force from particles in the central

region

Time-symmetric individual timestep (JM et al 2006)

might help....



Summary

• GRAPE-DR, with programmable processors, will

have wider application range than traditional

GRAPEs.

• Second prototype (close to production version) is

just arrived.

• Commercial version should be ready by...

sometime around the end of this year.

• Peak speed of a card with 4 chips will be 2 Tflops



6th and 8th-order Hermite schemes

• fourth-order Hermite scheme is not widely used.

• For many problems, higher order schemes can be

advantageous.

• GRAPE-DR (unlike previous GRAPEs) can be

used with whatever schemes.



Two different ways to achieve higher
orders

• Use previous timesteps

• Calculate 2nd (for 6th) and 3rd (for 8th) time

derivatives directly.

The latter approach

• is easier to program.

• has much smaller error coefficient

• can be made time-symmetric



Acceleration and derivatives

aij = mj

rij

r3
ij

,

jij = mj

vij

r3
ij

− 3αaij,

sij = mj

aj − ai

r3
ij

− 6αjij − 3βaij,

cij = mj

jj − ji

r3
ij

− 9αsij − 9βjij − 3γaij.



Acceleration and derivatives (cont’d)

α =
rij · vij

r2
ij

,

β =
|vij|2 + rij · (aj − ai)

r2
ij

+ α2,

γ =
3vij · (aj − ai) + rij · (jj − ji)

r2
ij

+ α(3β − 4α2),



Predictor and corrector

Predictors: Usual polynomial form.

Caution: need to predict acceleration (and jerk for

8th order) and need to use one previous value(s) to

construct higher-order terms.

Correctors:

vi,c = vi,0 +
∆t

2
(ai,1 + ai,0) −

∆t2

10
(ji,1 − ji,0) +

∆t3

120
(si,1 + si,0),

vi,c = vi,0 +
∆t

2
(ai,1 + ai,0) −

3∆t2

28
(ji,1 − ji,0)

+
∆t3

84
(si,1 + si,0) −

∆t4

1680
(ci,1 − ci,0) + O(∆t9),



Timestep criterion

“Generalization” of the standard one:

∆t = η




|a(0)||a(2)| + |a(1)|2

|a(p−3)||a(p−1)| + |a(p−2)|2




1/(2p−6)

.

seems to work fine.



Numerical result
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• N = 1024,
Plummer model,
ε = 4/N

• Higher order
schemes actually
work.

• They allow much
larger timesteps
than that for the
4th order scheme
for practical
range of accuracy.


