
Frameworks for large-scale astrophysical
simulations

Jun Makino
Kobe University/ RIKEN Center for Computational Science

Talk plan
1. The evolution of the number of particles in astrophysical

simulations

2. What should be done?

3. Design of FDPS

4. Current status

5. Who are using FDPS?

6. Summary

The evolution of the number of particles in
astrophysical simulations

early times present remark
Cosmological N -body 4000(1979) 5.5 × 1011(2015) Ishiyama et al.
Galaxy formation 8192(1991) 5 × 106(2017) Auriga, DM particles
Star clusters 250(1974) 106(2016) DRAGON
Planetary formation 200(1982) 80000(2017) Kominami et al.
Giant Impact 2000(1986) 6 × 106(2017) Reinhardt and Stadel 2017

• Except for cosmological N -body simulations, the increase in N in the
last 3-4 decades is 3-4 orders of magnitudes

• N for cosmological N -body calculation increased by eighth order of
magnitude, consistent with the increase of the computer power

“N gap” between cosmology and everything else.

Why such a large gap
• Cosmological N -body is “easy”. We need gravity and shared-

timestep leapfrog integrator, nothing else. Codes for other
fields are not so well optimized.

• Direct N2 algorithm is still used for star clusters and plan-
etary formation

• Star cluster simulations need to cover relaxation timescale:
one more N .

• Tree+individual timestep for galaxy formation does not scale
well (Saitoh and JM 2010).

What do we need?
• We need new algorithms (calculation cost per dynamical

time less than N2) for star clusters and planetary formation

– Tree/Direct Hybrid integrator (Oshino+ 2011)

• For each problem (and for each machine architecture...) we
need to develop a highly efficient and scalable code.

What do we need?
• We need new algorithms (calculation cost per dynamical

time less than N2) for star clusters and planetary formation

– Tree/Direct Hybrid integrator (Oshino et al. 2011)

• For each problem (and for each machine architecture...) we
need to develop a highly efficient and scalable code.

What we have learned (in the last three decades)

• Developing highly efficient and scalable code for anything
more complicated than cosmological N -body simulation
seems practically impossible

There are so many obstacles
• We need to write parallel programs using MPI. This is a very

time-consuming and error-prone process. We also have to
do a lot of work to optimize the communication and load
balancing.

• To achieve reasonable efficiency on modern machines, we
have to do lots of “tuning” including the modification of
the data structure and loop structure to make better use of
Cache memories.

• We also have to find some way to use the SIMD instruction
set of modern processors.

• If we are to use GPGPUs, we need to modify the algorithm,
data structure, and rewrite the code using Cuda or OpenCL
or ...

Lost Hope
Thirty years ago we hoped

• that parallelizing compilers would solve all problems.

• that big shared-memory machines would solve all problems.

• that parallel languages (with some help of compilers) would
solve all problems.

But...

• These hopes have never been fulfilled.

• Reason: low performance. Only approaches which achieve
the best performance on the most inexpensive systems have
survived.

What we are doing now
1. A small group of astrophysicists (actually in most cases a

single person) develops complex MPI codes (Gadget, pkd-
grav, Gasoline, GreeM, AREPO, REBOUND,)

2. If we get large funding, or if the application is selected for
petascale or exascale project, we pass our code to tuning
specialists from HPC companies or big national labs.

Now we know that these approaches are not enough to de-
velop an efficient and scalable code (except for cosmological
N -body codes).

Framework — a different approach
Basic idea:

• Formulate an abstract description of efficient and scalable
parallel particle simulation code and apply it to many differ-
ent problem.

• “Many different” means particle-based simulations in gen-
eral.

• Achieve the above by “metaprogramming”

• DRY (Don’t Repeat Yourself) principle.

To be more specific:
Particle-based simulations includes:

• Gravitational many-body simulations

• molecular-dynamics simulations

• CFD using particle methods(SPH, MPS, MLS etc)

• Meshless methods in structure analysis etc (EFGM etc)

Almost all calculation cost is spent in the evaluation of inter-
action between particles and their neighbors (long-range force
can be done using tree, FMM, PME etc)

This is of course why GRAPEs were useful when we could
develop them.

Our solution
If we can develop a program which can generate a highly op-

timized MPI program for

• domain decomposition (with load balance)

• particle migration

• interaction calculation (and necessary communication)

for a given particle-particle interaction, that will be the solu-
tion.

Design decisions
• API defined in C++

• Users provide

– Particle data class
– Function to calculate particle-particle interaction

Our program generates necessary library functions. Inter-
action calculation is done using parallel Barnes-Hut tree al-
gorithm

• Users write their program using these library functions.

Actual “generation” is done using C++ templates.

Status of the code
Iwasawa+2016, Namekata+2018, Iwasawa+ 2020a, b

• Publicly available

• A single user program can be compiled to single-core, OpenMP
parallel or MPI parallel programs.

• Parallel efficiency is very high

• User program can be written in standard C/Fortran (since
C API is there, in principle from any other language with
standard C interface).

• GPUs can be used

• High-level compiler for interaction kernel.

Tutorial
FDPS Github: https://github.com/FDPS/FDPS

https://github.com/FDPS/FDPS/raw/master/doc/doc_tutorial_cpp_en.pdf
https://github.com/FDPS/FDPS

Getting FDPS and run samples
> git clone git://github.com/FDPS/FDPS.git
> cd FDPS/sample/c++/nbody
> make
> ./nbody.out

To use OpenMP and/or MPI, change a few lines of Makefile

Domain decomposition

Each computing node (MPI
process) takes care of one
domain
Recursive Multisection (JM 2004)

Size of each domain are
adjusted so that the calculation
time will be balanced (Ishiyama
et al. 2009, 2012)

Works reasonable well for up to 160k processes (so far the
max number of processes we tried)

Sample code with FDPS — Particle class
#include <particle_simulator.hpp> //required
using namespace PS;
class Nbody{ //arbitorary name
public:

F64 mass, eps; //arbitorary name
F64vec pos, vel, acc; //arbitorary name
F64vec getPos() const {return pos;} //required
F64 getCharge() const {return mass;}//required
void copyFromFP(const Nbody &in){ //required

mass = in.mass;
pos = in.pos;
eps = in.eps;

}
void copyFromForce(const Nbody &out) { //required

acc = out.acc;
}

Particle class (2)
void clear() { //required

acc = 0.0;
}
void readAscii(FILE *fp) {//to use FDPS IO

fscanf(fp,
"%lf%lf%lf%lf%lf%lf%lf%lf",
&mass, &eps, &pos.x, &pos.y, &pos.z,
&vel.x, &vel.y, &vel.z);

}
void predict(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
pos += dt * vel;

}
void correct(F64 dt) { //used in user code

vel += (0.5 * dt) * acc;
}

};

Interaction function

template <class TParticleJ>

void CalcGravity(const FPGrav * ep_i,

const PS::S32 n_ip,

const TParticleJ * ep_j,

const PS::S32 n_jp,

FPGrav * force) {

PS::F64 eps2 = FPGrav::eps * FPGrav::eps;

for(PS::S32 i = 0; i < n_ip; i++){

PS::F64vec xi = ep_i[i].getPos();

PS::F64vec ai = 0.0;

PS::F64 poti = 0.0;

Interaction function

for(PS::S32 j = 0; j < n_jp; j++){

PS::F64vec rij = xi - ep_j[j].getPos();

PS::F64 r3_inv = rij * rij + eps2;

PS::F64 r_inv = 1.0/sqrt(r3_inv);

r3_inv = r_inv * r_inv;

r_inv *= ep_j[j].getCharge();

r3_inv *= r_inv;

ai -= r3_inv * rij;

poti -= r_inv;

}

force[i].acc += ai;

force[i].pot += poti;

}

}

Time integration (user code)

template<class Tpsys>
void predict(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].predict(dt);
}

template<class Tpsys>
void correct(Tpsys &p,

const F64 dt) {
S32 n = p.getNumberOfParticleLocal();
for(S32 i = 0; i < n; i++)

p[i].correct(dt);
}

Calling interaction function through FDPS
template <class TDI, class TPS, class TTFF>
void calcGravAllAndWriteBack(TDI &dinfo,

TPS &ptcl,
TTFF &tree) {

dinfo.decomposeDomainAll(ptcl);
ptcl.exchangeParticle(dinfo);
tree.calcForceAllAndWriteBack

(CalcGravity<Nbody>(),
CalcGravity<SPJMonopole>(),
ptcl, dinfo);

}

Main function
int main(int argc, char *argv[]) {

F32 time = 0.0;
const F32 tend = 10.0;
const F32 dtime = 1.0 / 128.0;
// FDPS initialization
PS::Initialize(argc, argv);
PS::DomainInfo dinfo;
dinfo.initialize();
PS::ParticleSystem<Nbody> ptcl;
ptcl.initialize();
// pass initeraction function to FDPS
PS::TreeForForceLong<Nbody, Nbody,

Nbody>::Monopole grav;
grav.initialize(0);
// read snapshot
ptcl.readParticleAscii(argv[1]);

Main function
// interaction calculation
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

while(time < tend) {
predict(ptcl, dtime);
calcGravAllAndWriteBack(dinfo,

ptcl,
grav);

correct(ptcl, dtime);
time += dtime;

}
PS::Finalize();
return 0;

}

Remarks
• Multiple particles can be defined (such as dark matter +

gas)

• This program runs fully parallelized with OpenMP + MPI.

Interaction Kernel
PIKG (Particle-particle Interaction Kernel Generator) Nomura+ (in prep.)
From simple and high-level description like:

F64 eps2

rij = EPI.pos - EPJ.pos

r2 = rij * rij + eps2

r_inv = rsqrt(r2)

r2_inv = r_inv * r_inv

mr_inv = EPJ.mass * r_inv

mr3_inv = r2_inv * mr_inv

FORCE.acc -= mr3_inv * rij

FORCE.pot -= mr_inv

Optimized code to use SIMD
units/GPGPU is generated. Currently
supports:
AVX2, AVX512, Arm SVE (for
supercomputer Fugaku), and Cuda
(coming soon)

Users of FDPS can get full advantage of
new SIMD instructions without writing
machine-specific code.
PIKG has been used to implement SPH
on Fugaku.

Example of calculation
Giant Impact calculation
(Hosono+ 2017, PASJ 69,
26+)
Figure: 9.9M particles
Up to 2.6B particles tried
on K computer

Also used for our moon-
from-magma-ocean paper
(Hosono+ 2019, Nature
Geoscience 12, 418)

Performance examples

10-3

10-2

10-1

100

101

102

102 103 104 105

w
al

l c
lo

ck
 ti

m
e

pe
r

tim
es

te
p[

s]

of cores

total
domain decomposition

exchange particle
grav

100

101

102

103

pe
rf

or
m

an
ce

[T
F

LO
P

S
]

K
XC30

50% of TPP (K)
35% of TPP (XC30)

Strong scaling with 550M
particles
Measured on both K computer
and Cray XC30 at NAOJ
Gravity only, isolated spiral
galaxy
scales up to 100k cores
30-50% of the theoretical peak
performance

New public codes developed using FDPS

• PENTACLE https://github.com/PENTACLE-Team/PENTACLE Planetary for-
mation code

• GPLUM https://github.com/YotaIshigaki/GPLUM Yet another planetary
formation code

• PeTar https://github.com/lwang-astro/PeTar Globular Cluster

• FDPS SPH https://github.com/NatsukiHosono/FDPS SPH SPH for Giant
Impact etc.

We are also working on a galaxy formation code with new algorithm (ASURA/FDPS)

Papers published using FDPS

• 60 (Google Scholar)/32 (ADS)

• Roughly half in astrophysics and half in other fields

• SPH (Tanikawa, Sugiura, Hosono, Washizu, Sugimura ...)

• Molecular Dynamics (Ayuba, ...)

• Nbody (Michikoshi, Nakajima, ...)

Summary

• A Framework for Developing parallel Particle Simulation code

• FDPS offers library functions for domain decomposition, particle ex-
change, interaction calculation using tree.

• Can be used to implement pure Nbody, SPH, or any particle simulations
with two-body interactions.

• Achieves very good scalability and efficiency on modern HPC plat-
forms, including K, Fugaku, and GPGPUs.

• If you are considering to write your own program for some particle-
based simulation, please take a look at FDPS at
https://github.com/FDPS/FDPS

• If you are looking for a high-performance code, one of new codes writ-
ten using FDPS may be it.

• We are also working for grid-based simulation (https://github.com/formura),
but today I have no time...

