
Accelerator for LLM inference in the
Chiplet era

Jun Makino
Kobe University/Preferred Networks

CogArch 2025 June 22 2025



Summary

• We have finally come into the “Post-Moore” era, where the “shrink” of
transistors does not give automatic improvement of the performance
of computers.

• From the viewpoint of the computer architecture, the real problem is not
the “Post-Moore” era, but the fact that the designs of CPUs or GPUs
cannot take advantage of the advance of the semiconductor technol-
ogy.

• This is similar to what happened to shared-memory parallel-vector ma-
chines 30 years ago. Distributed-memory machines took over.

• I’d like to discuss what is necessary to improve performance and how
“Chiplets” can or cannot help.



Chiplet
Chiplet technology landscape

2(2.5)D 3D
Logic-Logic AMD/Intel CPU/GPU and many others ?
Logic-SRAM ? AMD CPU/GPU
Logic-I/O many ongoing? ?
Logic-DRAM HBM 3D Stacked DRAM

• 2(2.5D) Chiplet: essentially a PCB with very fine pattern and pad pitches.

• 3D Chiplet: New technology not much utilized or even understood.



Chiplet
Chiplet technology landscape

2(2.5)D 3D
Logic-Logic AMD/Intel CPU/GPU and many others ?
Logic-SRAM ? AMD CPU/GPU
Logic-I/O many ongoing? ?
Logic-DRAM HBM 3D Stacked DRAM

• 2(2.5D) Chiplet: essentially a PCB with very fine pattern and pad pitches.

• 3D Chiplet: New technology not much utilized or even understood.

– We discuss the potential of 3D Logic-DRAM in this talk.



Talk Structure

• How computers have evolved and why the evolution has slowed down

• (Non)-similarity between system-level and chip-level architectures.

• Requirement of LLM inference

• MN-Core

• “Chiplets”

• Summary



The evolution of computers
From 1940s to 2010s, the speed of computers have improved by roughly
a factor of 100 in every decades. Why such an exponential growth was
possible for such a long time?
Basic reasons:

• Switching elements became faster

• Switching elements became smaller and less power-consuming

• Switching elements became cheaper



Evolution of Supercomputers

• Mostly machines in Top-500 list
(except GRAPEs and machines
before 1993)

• A bit less than 16 orders of mag-
nitude in 80 years.

• How such improvement has actu-
ally achieved?

(In 2020s, Top 500 list no longer represent the fastest or largest machines...
Huge GPU clusters are used for LLM training.)



Improvement of the switching speed

• Actually vacuum tubes were already pretty fast.
• Signal propagation delay through wires have been always more impor-

tant.
• Long time ago signals on wires propagate with the speed close to the

speed of light, which is not so fast... (30cm/1ns)
• “Wires” in modern processor chips are so thin, the resistance is very

large and RC delay becomes easily significant (∝ l2/d2 where l: wire
length and d: wire width and height)

– If the wire width is shrinked by a factor of k, the siginal delay for
a given length INCREASES by a factor of k2 — main problem with
modern LSI design.



Miniaturization of switching elements

• The change of Vacuum tube → discrete transistors → IC was the driv-
ing factor until 1970s.

• Reduction of the power consumption was as important as size reduc-
tion.

• Since 1980, CMOS scaling has been the driving force. Roughly a factor
of 10 shrink in 10 years.

• CMOS scaling law, which means the speed improves and power is re-
duced when CMOS transistor becomes smaller, had been the true driv-
ing force of computer evolution.

• CMOS scaling has reached the limit by around 2000, when the reduction
of Vdd stopped.

• The miniaturization itself has become difficult and the reduction of the
cost per transistor has almost stopped. (The end of the Moore’s Law)



What is CMOS scaling?
Dennard Scaling

When we make the size (in all three dimensions) of a CMOS transistor
k times smaller, and Vdd also k times smaller and increase the impurity
concentration by the same factor of k, the switching speed is improved
by k and power consumption per switching 1/k2.

This means, with d being the line width,

Clock speed ∝ 1/d

Operating voltage ∝ d

Performance ∝ 1/d3 (For same power and die area)



Semiconductor evolution

• Transistor size had shrunk exponentially until 2015.

• CMOS scaling law has broken by around 2000 (90nm)

What happened?

• Down to 90nm, clock was improved by keeping voltage high.

• This resulted in near-exponential increase in power consumption.

• So the evolution changed the direction to multicore and SIMD units.

• By around 2015, multicore and wide SIMD approach has become diffi-
cult, and power consumption started to increase again...

This does not look like the most clever way...



Looking back the evolution of computer ar-
chitecture

• Until 1976: Scalar computers. The last one: CDC 7600

• 1976 to 1992: Shared memory parallel vector processors. Cray-1 to
C-90.

• 1993 to 2008: Distributed-memory parallel microprocessors. Cray T3D
to Cray XT4.

• Since 2008: CPU + GPU (or some other accelerator). IBM Roadrunner

Roughly in every 15 years big change architecture occurred.
The successor of GPU has not appeared yet.



Why the change was necessary?
Basic reason: Existing architecture became unable to make use of the ad-
vance in the semiconductor technology

• advance in the semiconductor technology

• limit in the scalability of the architecture



Scalar to vector

• Scalar computer: use the increased number of transistors to make a
faster arithmetic unit.

• Magnetic core memory, much slower than transistors

• CDC 7600 reached the limit: fully pipelined arithmetic unit

• S. Cray started the development of 4-processor CDC 8600, but project
canceled and Cray established Cray Research.

Scalar machines could not make use of

• Available gate count much larger than that for fully pipelined arithmetic
unit

• Very fast SRAM main memory

Vector machines could use at least fast SRAM(and later DRAM) memory



Vector to MPP

• Assumption of vector archtecture: Memory bandwidth can be made
large enough to support arithemetic units.

• Advance of vector processors: increase in pipeline per processor and
number of processors which share the physical memory.

• Wires and switches increase faster than number of pipelines. 64 pipelines
seem to be the practical limit — assumption broke down.

• Need to move to a system made of large number of simple processors,
each with small memory, connected with relatively thin network.

• Early examples: Intel Touchstone Delta, Cray T3D



MPP to GPU

• It becomes possible to fit a large number of processors (pipelines) in
one chip.

• The same situation as that of vector-parallel processors.

• Many-core processors have hierarchical cache with coherency.

• hardware and power consumption to maintain coherency becomes dom-
inant.

• GPU relaxes/removes coherency and thus push up the limit a bit.



GPU to ???

• Even without coherency, the data movement between off-chip DRAM
and multiple levels of cache memory becomes the bottleneck.

• The “obvious” solution is to give up the cache hierarchy completely
and move the main memory physically close to processors.

• In other words, we need to move to on-chip distributed-memory pro-
cessor.

• However, we do not know how to make such a thing, unless we give up
DRAM memory completely.



(Non)-Similarities between system-level and
chip-level evolution

System Chip
Up to CDC 7600 Up to Intel 80860 single pipe

Cray 1 to T90 to Intel KNL multiple pipe, shared memory
Stanford DASH/SGI Altex GPUs? NUMA CPUs? distributed-shared memory(??)

Cray T3D to K/Fugaku — distributed memory
GPU clusters — non-coherent cache

No analogue of distributed-memory systems in the chip side. Needless to
say about GPU clusters...



What we did instead

DDRx(2000～) GDDRx(2003～) LPDDRx(2008～) HBMx(2015～)

• DRAM cell structure and power consumption has not change much.

• Main change: wire length between DRAM chips and XPU.

• Access energy: DDRx: 20pJ/bit, HBMx: 4pJ/bit. Very large reduction.
But not enough.



Why the horizontal data move so hard?
Delay and power consumption.
The capacitance of a wire per unit length is independent of the line width d.
On the other hand, the resistance per unit length is proportional to d−2.

• The propagation delay of a wire ∝ d−2

• The power consumption is constant.
• Thus, it is very difficult to increase the bandwidth of data move for a

fixed length.



Some exercise

• A wire of length 10cm (105µm) has 20pF capacitance. For 1V swing, it
consumes 10pJ/bit.

• Actual power consumption of a DDR5 is around 20pJ/bit. Voltage is
around 1.3V.

• LPDDR5 and GDDR6x: ∼ 10 pJ/bit Wire length is shorter than that of
DDR5 modules. and swing voltage is smaller.

• HBMx: 3-4 pJ/bit. Wire length is around 25mm.

Modern GPUs spend around 50% of total power to move data from HBM to
L2D$.



Intel GPU example
B/F: number of bytes you can move between memory and arithmetic unit
while you do on FP(usually FP64) operation.
B/F values

Registers: 8? (One
usually need 16...)
L1: 2
L2: 0.25
Memory: 0.06
These are very small
numbers, but yet
caused the excessive
power consumption...



Other GPUs
FP64 perf. (TF) L2 BW(B/F) DRAM (B/F)

V100 7.8 0.32 0.12
A100 19.5 0.25 0.08

AMD MI250X 47.9 0.27 0.07
H100 34 0.17 0.10

Intel MAX 52(31) 0.25 0.06

• L2 bandwidth numbers are very small.
• B/F numbers are low and that results in rather low application efficiency

(except for “traditional” ML applications where all you need is matrix
multiplication)

• LLM requires extremely high memory bandwidth. Very different from
“traditional” ML applications.



Characteristics of LLM (or transformers)

• Models have a very large number of parameters, such as 70B, 400B etc.

• These parameters are used to generate one token for one user (with
many users parameters are shared, but contexts are not)

• Edge or private uses require rather small batch size.

• If we want to achieve 500 tokens/s with 400B model, we need 200TB/s of
memory bandwidth for 400GB or memory on a tightly coupled machine
(currently impossible).



Post-GPU architecture or LLM accelerator
architecture
Processors with Post-GPU architecture for LLM should have very large mem-
ory bandwidth for a fairly large memory and with a reasonably low power.
In order to increase the memory bandwidth without increasing the power
consumption too much, we must further reduce the memory access energy
per bit.
This means we need to reduce the physical distance between processor
cores and memories.

But how?



What we can do and how will it look like.

We need to realize “3D
memory”, in other words, to put
DRAM on top (or bottom) of the
processor die.
We also need to change the
memory hierarchy.



3D Stacking (Chiplet?)
Connect multiple DRAM dies and a logic die
using a very large number of TSVs and pads.
Microbumps or Hybrid bonding are used for
connection.
Several (small) DRAM companies are working
on this technology.
Taiwan: Powerchip, Winbond, Nanya
China: CXMT, YMTC, XMC.

This might be the second (and last...) time that the large jump in the
memory bandwidth occurred in the history of computer architecture.
First time: semiconductor memory.



Stacked DRAM with shared and distributed
arch

Shared memory: Data
move distance not
much different from
that of HBM

Distributed memory:
Data move minimized

Now we can thing of chip-level analogue of distributed memory parallel
computer.



Similarities between system-level and chip-
level evolution

System Chip
Up to CDC 7600 Up to Intel 80860 single pipe

Cray 1 to T90 to Intel KNL multiple pipe, shared memory
Stanford DASH/SGI Altex GPUs?NUMA CPUs? distributed-shared memory(??)

Cray T3D to now On-chip distributed memory distributed memory
processor with 3D DRAM

Now there might be an analogue of distributed-memory systems in the chip
side.



Microbumps and Hybrid Bonding

Microbumps Hybrid Bonding



Microbump

• Extension of solder balls and “C4” bumps.

• ∼ 40µm pitch is available. In Intel MAX GPU 37µm pitch has been
used.

• Will go below 10µm in future.

• Used in all HBM memories shipped so far up to HBM3e.

• High yield is possible since we stack dies after they are cut out from
wafer.

• Heat resistance is large = cooling is problem.



Hybrid bonding

• Cu pad on dies are bonded through thermal process, after dies are
bonded (no adhesive or whatever is used. SiO2-SiO2 “direct bonding”)

• First used in Sony’s CMOS image sensors.

• ∼ 5µm pitch is available now.

• < 1µm will be available.

• Roughly 100x more pads can be used compared to microbumps.

• Heat resistance is quite low. “DRAM on top” structure is possible.

• Bonding process is “Wafer-on-Wafer”. So the cost should be low. How-
ever, there is no way to remove defective dies before bonding. So some
new design method which can achieve near 100% yield is essential.



DRAM design image
Very large number of “small” DRAM blocks.
16x16, 32x32 etc.
Each block has its control input, address input
and data I/O pads.
Example: 200Mbit/mm2 density DRAM,
800mm2 die = 160Gbit (effective 144Gbit)
1024 144Mbit blocks (with ECC). 144bit I/O.
Total pads/die = 150K. With 4 dies 600K pads.
500MHz data rate gives 40TB/s.
So extremely high memory bandwidth is
mechanically possible.
Question: power consumption.



Power consumption and capacity
Current goal with 3D DRAM: 0.5pJ/bit (around 1/15 of the actual power con-
sumption of HBM)
This means 40TB/s = 320 Tb/s = 160W. NVIDIA Rubin Ultra: 32TB/s, 3-4kW.
Can be 20x more energy efficient compared to Rubin Ultra.
Practical problem: 4 DRAM dies of 800mm2 size gives only 72GB. We need
much more.

• Use more dies per package (possible)

• Stack more DRAM dies (possible)

• Use DRAMs with more advanced process technology (maybe in fu-
ture — 200Mbits/mm2 is what is available now from second-tier DRAM
companies)



How far can we go?

• With hybrid bonding a very large number of pads is possible. This
means that the DRAM design can be greatly simplified.

• For example, almost all of the digital logic circuits on current syn-
chronous DRAM design can be moved to the logic die side.

• 0.1-0.2 pJ/bit is within reach (1/20 — 1/40 of HBMx)

• DRAMs with IGZO FET might further reduce the access energy (cell
capacitance might be reduced by several orders of magnitude)



Design challenges
Many, many challenges...

• Physical design of DRAM-logic interface: what buffer cells can be used,
how to interface signals with different voltages, how to actually connect
the DRAM pads and logic IF cells if their physical locations do not ex-
actly match (need RDL), how to design power grid. and so on...

• Yield: Hybrid bonding is “Wafer-on-wafer” bonding. No way to select
good dies before stacking. (Almost) all dies must be “good”.

I believe we can come up with reasonable solutions for all of these practical
issues.



Impact on processor architecture
Again a number of them, mostly not well understood.

• Processor architecture. SIMD/MIMD/something in between?

• Memory hierarchy

• Inter-processor network architecture

• DRAM interface design

In other words: EVERYTHING we learned about computer architecture in
the last 40 years is based on the assumption that memory hierarchy is nec-
essary because DRAM is slow. This assumption might be no longer true.



Impact on algorithms/applications

• 0.1pJ/bit corresponds to 312.5GF/W(FP64) for B/F=4.

– Maybe we can forget about cache-efficient (and thus cache-oblivious)
algorithms and go back to the era of vector processors with B/F=4.

• Further reduction of DRAM access energy seems possible, while the
reduction of the logic power consumption seems difficult.

– Algorithms which reduce the arithmetic operations while increas-
ing the memory access might become important.



MN-Core L1000
Preferred Networks”s answer to the challenge of designing on-chip distributed-
memory processor

Preferred networks is
currently developing
MN-Core L1000, which
will provide 10x more
LLM inference
performance compared
to GPUs, by 2026.

https://mn-core.com



MN-Core

• AI-oriented processor developped by Preferred Networks (PFN) and JM.

• (JM moved to the cross-appointment position between Kobe U and PFN
as of Nov 2023)

• First gen completed in 2020

– At the time of completion, achieved highest FP16 performance per
board and highest performance per watt number.

– FP16 Peak 524TF

– Power consumption less than 500W, 1.2TF/W

– 2.5x higher performance per watt compared to NVIDIA V100 (both
made with TSMC N12 process)



MN-Core overview

• 1 card : 1 module

• 1module : 4-die MCM

• 1 die: PCIe (gen4, x16), LPDDR4 memory, 4 “Level-2 broadcast blocks”
(L2Bs)

• 1 L2B: 8 L1Bs

• 1 L1B: 16 MABs (Matrix Arithmetic Blocks)

• 1 MAB: 4 Processor Elements and one Matrix arithmetic unit

• FP64:FP32:FP16 performance ratio is 1:4:16

• Entire module operates as one huge SIMD processor with single in-
struction stream.



MN-Core Structure



MN-Core



Details

• PE(Processing element)

• L1B(Level 1 broadcast block)

• L2B(Level 2 broadcast block)



PE(Processing element)

IALU

GRF0

LM0

LM1

T-REG

M-REG

To MAU

To L1B

GRF1

From MAU

From L1B

• IALU and MAU as arithmetic units

• MAU performs FP64, FP32 and FP16
matrix-vector product

• GRF are 1R1W 2-port memories. LMx are single-port

• T-reg: additional register, 1R1W 4 words (vector length)

• LMx (local memory): 2048 64bit-words x 2, GRF: 512 words

• all instructions are vector instructions with length 4



L1B(Level 1 broadcast block)
MAB0

MAB1

MAB15

L
1
B
M

• 16 MABs are connected to one
L1BM(level 1 broadcast memory)

• Data read from L1BM are broad-
casted to all PE (or MAB).

• Data read parallel from all PEs/MABs can be summed up and stored to
L1BM with full speed.

• No direct connection between PEs.



L1B characteristics

• Using explicit broadcast/reduction, fine-grained parallel operations can
be performed with very low overhead.

• In particular, reduction operations over multiple PEs. which are very
slow on GPUs, can be done very quickly.

• As a result, large number of PEs can be used to parallelize relatively
small matrix product. This feature is actually very important for the
inference performance of both CNN and LLM.

• L2B and top-level structures are largely the same as that of L1B.



Difference from usual processor
architecture

• With present-day high-performance CPUs, from the machine code one
need to restore the parallelism by means of register renaming and OoO
execution.

• With MN-Core architecture, very large number of registers are all visible
and there is no need for register renaming.

• By using fixed-length vector instruction, we removed the need of out-
of-order execution as well. There is no need of real-time instruction
scheduling since the result of one instruction is available to the next
instruction.

• A large number of visible registers requires very long instruction words,
which is okay because of chip-wide SIMD architecture.



MN-Core/MN-3 system



MN-Core 2 and next generations

• MN-Core2 was completed in 2023. Now commercially available.

• Performance comparable to MN-Core with 1/5 of die area.

• Development of next generations already started.

– Samsung 2nm, should achieve highest performance for training.

– Also started the development of new processor for LLM inference.



Software for MN-Core 2

• MLSDK: AI-oriented

– PyTorch — ONNX — actual machine code.

– Existing PyTorch code (should) work with small changes.

• HPCSDK: For General-purpose HPC

– Dialects of OpenCL and OpenACC

– OpenACC direct resembles HPF.



Application performance of MN-Core 2
MN-Core 2 A100

GCN(PFN internal use) 5.41TF(FP32) 3.17TF
ResNet50 training 77TF(FP16) 33.2TF(BF16)
ResNet50 Inference 154TF(FP16) 33.7TF(BF16)
HIMENO benchmark 9.03TF(FP32) 0.634TF
OpenFDTD 0.655TF(FP32) 0.488TF

• Performance 1.5-5 times higher than that of A100

• Very high performance for finite-difference applications. (OpenFDTD
implementation used the temporal blocking and HIMENO benchmark
fits to the on-chip SRAM).



MN-Core and 3D DRAM

• With MN-Core architecture, it is natural to add DRAM units to each PE.

• Physical latency of DRAM (in particular in the same page) is very small,
and the total bandwidth is very large. So we can connect DRAM and
arithmetic units “directly”. No need for caches.

• Registers might be of some help.

• Very similar to large-scale SIMD machines like TMC CM-2 and MasPar
MP-2. So the programming model will be similar. Data parallel lan-
guages like HPF (OpenACC) can be used.



For anyone who still remembers CM
and Maspar and Garma Zabi

Q: CM and MasPar are dead. Why?

A: Because off-chip bandwidth became insufficient to support arithmetic
performance (the Memory Wall/the Attack of Killer Micros). The same
reason as vector processors died.

Q: So why do you think they can be resurrected?

A: Because DRAM is no longer “off-chip” with 3D stacking. With 3D stach-
ing, DRAM can offer bandwidth high enough to support arithmetic per-
formance.



Chiplet
Chiplet technology landscape

2(2.5)D 3D
Logic-Logic AMD/Intel CPU/GPU and many others ?
Logic-SRAM ? AMD CPU/GPU
Logic-I/O CPO? ?
Logic-DRAM HBM 3D Stacked DRAM

• 2(2.5D) Chiplet: essentially a PCB with very fine pattern and pad pitches.

• 3D Chiplet: can realize a huge reduction in the energy to move data.
Opens up new dimensions in the design space of computer architec-
ture.

– We discussed the potential of 3D Logic-DRAM in this talk.

– Logic-Logic integration might give interesting possibilities.



Summary

• We have finally come into the “Post-Moore” era, where the “shrink” of
transistors does not give automatic improvement of the performance
of computers.

• From the viewpoint of the computer architecture, the real problem is not
the “Post-Moore” era, but the fact that the designs of CPUs or GPUs
cannot take advantage of the advance of the semiconductor technol-
ogy.

• This is similar to what happened to shared-memory parallel-vector ma-
chines 30 years ago. Distributed-memory machines took over.

• In this talk, I focused on the potential of 3D integration of DRAM and
logic, and its impact on computer architecture. Logic-logic 3D integra-
tion might open up new possibilities as well.


