GRAPE-DR — Next-Generation GRAPE Project

Jun Makino

University of Tokyo

Talk overview

- GRAPE Project
- Science with GRAPEs
- \bullet Next Generation GRAPE the GRAPE-DR

GRAPE project

GOAL:

Design and build specialized hardware for simulation of stellar systems.

Rational:

N-body simulation is compute-intensive. With specialized hardwares, you can do larger simulations (better resolution) for same amount of money.

GRAPE-6	$(2002, 64 { m TF})$	4M\$
ASCI White	$(2001, 12 { m TF})$	200M\$
ASCI Q	(2002, 30 TF)	200M\$
Earth Simulator	(2002, 40 TF)	300M\$

(running cost is roughly proportional to the price)

Basic idea of GRAPE

Special-purpose hardware for force calculation General-purpose host for all other calculation

Flexibility High performance

GRAPE pipeline processor

 $GRAPE = \underline{GRA}vity \underline{PipE}$ Original proposal: Chikada (1988)

GRAPE pipeline processor(2)

$$\mathrm{F}_i = \sum\limits_{j
eq i} m_j rac{\mathrm{x}_j - \mathrm{x}_i}{(|\mathrm{x}_j - \mathrm{x}_i|^2 + \epsilon^2)^{3/2}}$$

GRAPE hardwares

- Low-accuracy machines
 - for collisionless systems
 - Very high performance for low cost
- High-accuracy machines
 - for collisional systems
- Machines for non-1/r force laws
 - Molecular Dynamics
 - **SPH**

GRAPE History(1)

Low accuracy machines

Machine	Year	Peak Speed	Notes
GRAPE-1	1989	$120 \mathrm{Mflops}$	First GRAPE
GRAPE-3	1991	14 Gflops	Custom LSI
GRAPE-5	1998	40 Gflops	$2 {\rm pipes/chip}$

High accuracy machines

Machine	Year	Peak Speed	Notes
GRAPE-2	1990	40 Mflops	High accuracy
HARP-1	1993	180 Mflops	Hermite scheme
GRAPE-4	1995	$1.1 \mathrm{Tflops}$	$1728 { m chips}$
GRAPE-6	2002	64 Tflops	$2048 \mathrm{chips}$

GRAPE History(2)

Non 1/r force laws

Machine	Year	Peak Speed	Notes
GRAPE-2A	1992	180 Mflops	High accuracy
MD-GRAPE	1995	4.2 Gflops	Custom LSI
\mathbf{MDM}	2002	$75 \mathrm{Tflops}$	RIKEN project
\mathbf{PE}	2005?	1Pflops	RIKEN project

Evolution of GRAPE systems

GRAPE-6

64 Tflops peak speed Measured best performance: 35.3 Tflops Three

Gordon-Bell Prizes (2000, 2001, 2003)

The Earth Simulator

40 Tflops peak speed

Measured best performance: 26 Tflops

Three Gordon-Bell Prizes (2002-2004)

GRAPE-6 Processor pipeline

Calculates gravitational force, its first time derivative and potential.

GRAPE-6 Processor Chip

- \bullet 0.25 $\,\mu{\rm m}$ custom design (Toshiba TC240E, 1.8M gates)
- \bullet 2.5 V power supply, 90 MHz operation
- 6 pipelines in a chip
- 31 Gflops (equivalent) per chip
- system clock: 22.5 MHz

GRAPE-6 Processor Chip

GRAPE-6 vs Intel P4

	$\mathbf{G6}$	$\mathbf{P4}$
Design Rule (μm)	0.25	0.09 (Pr)
No. transistors	7M	$125\mathrm{M}$
Clock freq.	90M	3.8G
Power Consumption	15W	$\sim 100 { m W}$
No. ALUs	~ 400	2 (SSE2)
Peak speed(GF)	31	7.6

- 3,500 times more efficient use of transistors
- 30 times less heat per operation
- 6 years older technology

GRAPE-6 processor module

- 4 processor chips + Memory chips.
- Integrates all functions of GRAPE-4 processor board.

The GRAPE-6 Processor board

• Single board with 32 chips

- Semi-serial (LVDS) interface (350MHz clock, 4 wires)
- Two input ports and one output port
- Result from 32
 chips are summed
 by a reduction
 tree

The GRAPE-6 processor board

GRAPE-6

GRAPE-6A

- Single PCI card with 4 chips (130 Gflops peak)
- Commercial version from Hamamatsu Metrix (www.metrix.co.jp)
- Ideal for parallel treecode $/P^3M$
- \$6K within Japan

GRAPE-6s outside Tokyo University

Not a complete list.... Sorry if your institute is not listed.

- NAOJ (10? GRAPE-6 and Heidelberg (32 G6A) 10? GRAPE-6A)
- TIT (2? G6A)
- Gunma Observatory (1 G6)
- NIFS (1 G6)
- Tsukuba [8 G6 + 256 G6A(in 2005-2006)]
- Rochester (32 G6A)
- AMNH (3 G6)
- Drexel (1 G6)

- Cambridge (1 G6)
- Edinburgh (1 G6)
- Amsterdam (4 G6)
- Bonn
- Munich

Science with GRAPE

- Solar system/Planetary formation Daisaka, Takeda
- Star-forming region/Open clusters
- Globular clusters
- Galactic nuclei
- Galaxy formation Saitoh, Nakasato
- Clusters of Galaxies/Cosmology

4 out of 6 talks on N-body simulation this afternoon discuss GRAPE results. (excluding this talk)

Massive Black Hole in GCs?

Observation + **Interpretation**

3000 M_{\odot} black hole in M15? (Gerssen et al 2002) Without BH, luminocity profile gives too low central velocity dispersion.

N-body simulation without BH

Baumgardt et al., ApJ 2003, 582, L21.

Left: velocity dispersion; Right: Surface density.

We "found" BH, though there wasn't

By analyzing the simulation data in the same way as the observers did, we "found" a central black hole, though it is not there.

Estimated BH mass = $80M_{\odot}$. If scaled to M15, $\sim 3 \times 10^3 M_{\odot}$ (Gerssen *et* al.: ~ $3 \times 10^3 M_{\odot}$)

M 15 does not need black hole.

Is there any GC with central BH?

Baumgardt et al. 2004 (ApJL, submitted)

How would a GC with central BH look like?

Simulate globular clusters with central BH for a Hubble time.

Profile evolution

- Surface brightness profile becomes King7-like.
- Almost independent of initial profile and BH mass (in the range of 0.1% to 1%)

Globular cluster summary

- Globular clusters with central luminosity cusp do not contain massive central BH. They are really clusters in deep core collapse, with NS and WD dominating the central cusp.
- Most likely place to find massive central BH is some of normal-looking clusters with relatively large cores.

Next-Generation GRAPE — GRAPE-DR

- Budget approved. $(1.5M\$ \times 5 \text{ years})$
- Planned peak speed: 2 Pflops
- New architecture wider application range than previous GRAPEs
- Planned completion year: 2008

Why new architecture?

Essential reason:

Economical/Political, not technical/scientific...

Custom chip costs too much

1990 1 μ m 150K\$

1997 $0.25 \mu \mathrm{m}$ 1M

 $2004 \ 90nm > 3M$

- Theoretical Astrophysics in Japan is too narrow.
- We need to widen the application range.
- Wider application range (if possible) also helps in astrophysics.

- **SPH**

– Radiative transfer etc...

GRAPE-DR design goal

- Keep the high performance of previous GRAPE architecture
- Make it "programmable", at least in some limited sense

GRAPE-DR design goal

- Keep the high performance of previous GRAPE architecture
- Make it "programmable", at least in some limited sense

How?

GRAPE-DR design goal

- Keep the high performance of previous GRAPE architecture
- Make it "programmable", at least in some limited sense

How?

Key: High degree of on-chip parallelism

Parallelism in GRAPE

Formula to evaluate:

$$a_i = \sum\limits_j f(r_i,r_j,m_j)$$

Parallelism exists for both i and j

GRAPE uses three hardware-level parallelism:Pipelined processorj-parallelismMultiple pipeline in a chipi-parallelismMultiple chipsboth way

Most of parallelism is realized as multiple processors. Pipelined processor is only a small part of the solution.

GRAPE-DR Architecture

- Eliminate hardwired pipeline
- Integrate huge number of very simple processors (~1,000) to a chip
- processors (PE) = ALU+register file (no local memory)
- ALL PE run in parallel under the control of a single program

Parallel processor and pipeline

- Anything a pipeline can do a parallel processor also can do.
- Specialized pipeline processor for a specific application can achieve better performance.

• This advantage is, however, less than a factor of 10 and does not depend on the semiconductor technology.

PE Structure

GRAPE-DR processor structure

Result output port

Collection of small processor, each with ALU, register file (local memory)

One chip will integrate (hopefully) 1024 processors Single processor will run at 700MHz clock (2 operations/cycle).

Peak speed of one chip: 1-2 Tflops (30-60 times faster than GRAPE-6).

GRAPE-DR system structure

- 4 chips per board (PCI-X or PCI-Express)
- 2 boards per node (a node is standard PC with 10GbE network)
- 512-node cluster system

Total peak speed: 2-3 Pflops.

Other applications

- Particle-based simulations like MD, SPH
- Dense matrix operation(Linpack, LU decomposition, Eigenvalue calculation)
- BEM: Poisson equation, Electromagnetics
- CFD with spectral method over sphere
- Molecular orbital calculation
- Applications that need
 - large amount of computation
 - but not much memory or memory bandwidth

are potential targets.

Summary

- GRAPE project has successfully developed very high performance computers for astrophysical particlebased simulations.
- The next machine, GRAPE-DR, will have wider application range than traditional GRAPEs, keeping good price-performance ratio.

Emulating GRAPE

In the simplest case:

- Each PE calculates the force on its particle, but from one same particle
- The particle which exerts the force is supplied from the external memory.