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Talk structure

1. Overview of Gravitational Many-Body Problem

e collisionless and collisional systems

e Evolution of collisional systems
2. Some resent topics
e Black hole formation in star clusters

3. Simulation methods



Gravitational Many-Body Problem

e Definition

e Astronomical examples

e Large-IN limit — “collisionless” systems
e Two-body (collisional) relaxation

e Evolution of collisional systems



Definition
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x;, m;: position and mass of particle 2
fij: force from particle 3 to particle 2
Gravitational (Newtonian) force:
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(G : Gravitational constant



Astronomical Examples

Star Clusters Galaxy




Galaxy Group

i E Hickson Compact Group 40

Subaru Telescope, Mational Astronomical Observatory of Japan




Clusters of Galaxies

Galaxy Cluster
002441645

Yellow: Galaxies
in the cluster

| Blue: background
galaxies (enlarged
and stretched
through
gravitational lens
effect)




Large Scale Structure

Blanton et al. (2003) (astro-ph/0210215)

SDSS Survey

. < Radius: about
T 1Gpc (1/3 of the
Large—Scale Structure samplel0 Universe)




Constituent of the Universe

Heavy Elements:
0.03%

Meutrinos:
0.3%
Stars:
0.5%

Free Hydrogen
and Helium:
4%

m
Dark Matter:
25%
Dark Energy:
T0%

70%: Interacts with nothing
25%: Interacts only through gravity




Behavior of Dark Matter

Initial conditions

e Power spectrum of density fluctuation

e Cosmological parameters

Fairly well understood (if our assumption on the
nature of DM is correct)

We can simulate the structure formation through
dark matter dynamics

(Animation)



Large-IN Limit
— collisionless systems

Collisionless Boltzmann Equation (CBE)

of of
a——l—'v Vf—-Vo&. B0 = 0, (3)

f : Distribution function in 6-dimensional phase
space
® : Gravitational potential, given by:

Vi® = 4w Gp. (4)

p: mass density

p:m/dvfa (5)



Dynamical Equilibrium

Dynamical Equilibrium: Stationary solution of
CBE-+Poisson Eq.

Star clusters, Galaxies: Roughly in DE
Large Scale Structure: NOT in DE
(Dynamically too young)



Jeans’ Theorem

Stationary solution of CBE in a given potential ¢ can
be expressed as

.f(wa ’U) — .f[Il(ma ’U), I2(m9 'U), ]7 <6>
where I, I, ... are integrals of the motion.

Example: Spherically symmetric system:
f = f(E,J). (energy and total angular momentum)

The distribution function f for a stellar system
with finite mass cannot be Maxwellian, because f
must be zero for E > 0.




Dynamical and Thermal Equilibrium

Dynamical Equilibrium: Stationary state of CBE
No entropy production (no collision term)

— Not in thermal equilibrium
Not in LOCAL thermal equilibrium ether
(Jeans’ Theorem)



Collision term

Two-body relaxation

Close encounter between two point-mass particles
Orbit changes: similar to physical collision
Relaxation timescale:

'U3

= Gnm? log A

t,
log A: Coulomb Logarithm, log A ~ log N

N
log NV

ta (8)

t, ~

ty: Dynamical timescale
Relaxation timescale « Number of particles



Thermal (two-body) relaxation

e Important for

— Small-IN systems

— Systems with small dynamical timescale
e Examples

— Star clusters
— Central region of galaxies
— Clusters of Galaxies

— Few-body systems (triple etc)



Virial Theorem
and negative specific heat

For a stellar system in dynamical equilibrium

AE<0, AV>0
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E — _K — V/2 <9> drug

force 2"’/
E: Total energy (= K+V)
K: Kinetic energy
V': Potential energy

If a system loses energy
(AE < 0),
it becomes hotter
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Gravothermal Instability

Isothermal gas in
a spherical adiabatic wall

Radius: R

Mass: M

Central density: pg
Density at the wall: p,,

D = po/puw

D = 1: No gravity

D = oo: Singular solution
p o< r2




Gravothermal Instability( cont’d)

For large D (D > 709):

move heat from the central region to
outer Isothermal gas
l
central region becomes hotter due to
negative specific hear

l

heat flow grows



Evolution in finite amplitude

Numerical calculation i
Hachisu et al. (1978) : N
Gas dynamics

Lynden-Bell & Eggleton
(1980): Self-similar solution o)
Cohn (1980): Direct ol
integration of |
orbit-averaged ,
Fokker-Planck equation ol
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Energy Production

Gravitational contruction of star:
halted by nuclear fusion

Stellar system: Three-body binary formation

Close encounter of three particles —
One binary + one single star:
Statistically most likely outcome



Animation

Three particles



Gravothermal Oscillation

fog
g [

Sugimoto and

| | lj - | Bettwieser (1983)

JL Three curves:

4/ Different energy
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R coeflicients

Ve *  (Different N)



N-body simulation
1996 : Confirmed with N-body simulation

logp.
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Some recent topics

e Collision of stars and blackhole formation



IMBH candidate in MS82
Matsumoto et al. ApJL 547, L25

X-ray sources. Brightest one: Corresponds to
1000-solar-mass black hole (Intermidiate-mass BH)



Subaru observation

Dynamical
Center Stellar BHs

+69°40'40"

53s 523 51s 505 09h55m4Qs
RA (2000)



Host star cluster

McCrady et al. 2003 (astro-ph/0306373)
Cluster #11 (MGG-11)

e o, =11.4 4+ 0.8km/s
e half-light radius 1.2 £ 0.17pc

e kinetic mass 3.5 + 0.7 X 10° M
e Age ~ 10Myrs.

Very short relaxation time (less than 10Myrs)



A possible scenario

1. Massive stars sink to the center through
relaxation

2. Supermassive star forms through collision and
merging

3. This star collapses to a BH



Simulation
Portegies Zwart et al., Nature, Apr 15, 2004
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This scinario seems to work



GRAPE-6

Special-purpose computer for N-body simulations.

galo’gﬂops peak — World’s fastest computer as of




Basic idea of GRAPE

Special-purpose hardware for force calculation
General-purpose host for all other calculation
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Computer
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Time integration, Force calculation
10, etc

Flexibility High performance



GRAPE-6 Processor pipeline
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Calculates gravitational force, its first time derivative

and potential.



Evolution of GRAPE systems
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Next-Generation GRAPE
— GRAPE-DR

e Planned peak speed: 2 Pflops

e New architecture — wider application range than
previous GRAPEs

e primarily to get funded
e No force pipeline. SIMD programmable processor

e Planned completion year: FY 2008 (early 2009)



Processor architecture
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Chip structure

Host Computer External Memory

Result
Memory Write Packet Control Processor .
Instruction
(in FPGA chip)
SING Chip

Broadcast Block 0 RS o

— T 5 o | | - Collection of small

11t 11t 11t 11t N

‘ Register ‘ Register ‘ Register ‘ Register

. File File File File pro CeSSOI'S .

9 same data to

o all PEs [Aw ]| [[Aacu ]| |[Aw ] ([ A ]

8_ > | & ff P ft 7 ft i ft

o Reg»ilst Reg}ilzt Reg}ilset Reg}ilset

Q File i i i

B 512 processors on

atatime

% “ [aw ]| [[acu ) |[Aw ] ([ A ] .
i1t 7t 7 ft 7t

g ‘ Register ‘ Register ‘ Register ‘ Register O ne Ch ]. p

> Fil Fil Fil Fil

<

o ) [ | [ ] A 500MHz clock

< Peak speed of one
chip: 0.5 Tflops (20
times faster than
Result output port GRAPE-6).

Result Reduction and Output
Network




Development status

Sample chip delivered May 2006



Chip layout
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Prototype board

2nd prototype board. (Designed by Toshi Fukushige)
Difference from the 1st one:
PCI-Express x8 interface

On-board DRAM
Designed to run real applications



Summary

e Gravitational Many-body problem is fun

e Recently, numerical integration of N-body
systems have become useful tool for modelling
observations.

e Special-purpose computers help.



