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Talk structure

1. Overview of Gravitational Many-Body Problem

• collisionless and collisional systems

• Evolution of collisional systems

2. Some resent topics

• Black hole formation in star clusters

3. Simulation methods



Gravitational Many-Body Problem

• Definition

• Astronomical examples

• Large-N limit — “collisionless” systems

• Two-body (collisional) relaxation

• Evolution of collisional systems



Definition

mi

d2xi

dt2
=

∑
j 6=i

fij (1)

xi, mi: position and mass of particle i

fij: force from particle j to particle i

Gravitational (Newtonian) force:

fij = Gmimj

xj − xi

|xj − xi|3
, (2)

G : Gravitational constant



Astronomical Examples

Star Clusters Galaxy



Galaxy Group



Clusters of Galaxies

Galaxy Cluster
0024+1645

Yellow: Galaxies
in the cluster

Blue: background
galaxies (enlarged
and stretched
through
gravitational lens
effect)



Large Scale Structure

SDSS Survey
Radius: about
1Gpc (1/3 of the
Universe)



Constituent of the Universe

70%: Interacts with nothing
25%: Interacts only through gravity



Behavior of Dark Matter

Initial conditions

• Power spectrum of density fluctuation

• Cosmological parameters

Fairly well understood (if our assumption on the

nature of DM is correct)

We can simulate the structure formation through

dark matter dynamics

(Animation)



Large-N Limit
— collisionless systems

Collisionless Boltzmann Equation (CBE)

∂f

∂t
+ v · ∇f − ∇Φ ·

∂f

∂v
= 0, (3)

f : Distribution function in 6-dimensional phase

space

Φ : Gravitational potential, given by:

∇2Φ = 4πGρ. (4)

ρ: mass density

ρ = m
∫

dvf, (5)



Dynamical Equilibrium

Dynamical Equilibrium: Stationary solution of

CBE+Poisson Eq.

Star clusters, Galaxies: Roughly in DE

Large Scale Structure: NOT in DE

(Dynamically too young)



Jeans’ Theorem

Stationary solution of CBE in a given potential φ can

be expressed as

f(x, v) = f [I1(x, v), I2(x, v), ...], (6)

where I1, I2, ... are integrals of the motion.

Example: Spherically symmetric system:

f = f(E, J). (energy and total angular momentum)

The distribution function f for a stellar system

with finite mass cannot be Maxwellian, because f

must be zero for E > 0.



Dynamical and Thermal Equilibrium

Dynamical Equilibrium: Stationary state of CBE

No entropy production (no collision term)

→ Not in thermal equilibrium

Not in LOCAL thermal equilibrium ether

(Jeans’ Theorem)



Collision term

Two-body relaxation

Close encounter between two point-mass particles

Orbit changes: similar to physical collision

Relaxation timescale:

tr ∼
v3

Gnm2 log Λ
(7)

log Λ: Coulomb Logarithm, log Λ ∼ log N

tr ∼
N

log N
td (8)

td: Dynamical timescale

Relaxation timescale ∝ Number of particles



Thermal (two-body) relaxation

• Important for

– Small-N systems

– Systems with small dynamical timescale

• Examples

– Star clusters

– Central region of galaxies

– Clusters of Galaxies

– Few-body systems (triple etc)



Virial Theorem
and negative specific heat

For a stellar system in dynamical equilibrium

E = −K = V/2 (9)

E: Total energy (= K+V )

K: Kinetic energy

V : Potential energy

If a system loses energy

(∆E < 0),

it becomes hotter

(∆K > 0)

�
E < 0,

�
V> 0

drug 
force



Gravothermal Instability

Isothermal gas in

a spherical adiabatic wall

Radius: R

Mass: M

Central density: ρ0

Density at the wall: ρw

D = ρ0/ρw

D = 1: No gravity

D = ∞: Singular solution

ρ ∝ r−2

R

�

0

�

w



Gravothermal Instability( cont’d)
For large D (D > 709):

move heat from the central region to
outer Isothermal gas

↓
central region becomes hotter due to

negative specific hear
↓

heat flow grows

R

�

0

�

w



Evolution in finite amplitude

Numerical calculation
Hachisu et al. (1978) :
Gas dynamics

Lynden-Bell & Eggleton
(1980): Self-similar solution

Cohn (1980): Direct
integration of
orbit-averaged
Fokker-Planck equation



Energy Production

Gravitational contruction of star:

halted by nuclear fusion

Stellar system: Three-body binary formation

Close encounter of three particles →
One binary + one single star:

Statistically most likely outcome



Animation

Three particles



Gravothermal Oscillation

Sugimoto and

Bettwieser (1983)

Three curves:

Different energy

production

coefficients

(Different N)



N -body simulation

1996 : Confirmed with N -body simulation



Some recent topics

• Collision of stars and blackhole formation



IMBH candidate in M82

Matsumoto et al. ApJL 547, L25

X-ray sources. Brightest one: Corresponds to

1000-solar-mass black hole (Intermidiate-mass BH)



Subaru observation



Host star cluster

McCrady et al. 2003 (astro-ph/0306373)

Cluster #11 (MGG-11)

• σr = 11.4 ± 0.8km/s

• half-light radius 1.2 ± 0.17pc

• kinetic mass 3.5 ± 0.7 × 105M¯

• Age ∼ 10Myrs.

Very short relaxation time (less than 10Myrs)



A possible scenario

1. Massive stars sink to the center through

relaxation

2. Supermassive star forms through collision and

merging

3. This star collapses to a BH



Simulation

Portegies Zwart et al., Nature, Apr 15, 2004

This scinario seems to work



GRAPE-6
Special-purpose computer for N -body simulations.

64 Tflops peak — World’s fastest computer as of
2002.



Basic idea of GRAPE

Special-purpose hardware for force calculation

General-purpose host for all other calculation

d2xi

dt2
=

∑
j 6=i

−Gmj

xi − xj

|xi − xj|3

Host

Computer
GRAPE

x, m

a, �

Time integration, Force calculation

IO, etc

Flexibility High performance



GRAPE-6 Processor pipeline

XiXi
r 2

m
j

XiXiXi

Xj

XiXiVi

Vj

XiXi
r v.

XiXi
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XiXi
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m/r
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XiXi
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Calculates gravitational force, its first time derivative

and potential.



Evolution of GRAPE systems



Next-Generation GRAPE
— GRAPE-DR

• Planned peak speed: 2 Pflops

• New architecture — wider application range than

previous GRAPEs

• primarily to get funded

• No force pipeline. SIMD programmable processor

• Planned completion year: FY 2008 (early 2009)



Processor architecture

GP Reg
 32W

Local Mem
 256W

T Reg

+

x

M
ultiplexor

M
ultiplexor

INT
ALU

SHMEM
Port

SHMEM
Port

A

B

Mask(M)Reg

PEID
BBID

• Float Mult

• Float add/sub

• Integer ALU

• 32-word registers

• 256-word memory

• communication

port



Chip structure

B
roadcast M

em
ory

Broadcast
same data to
all PEs

Control Processor

(in FPGA chip)

 

Memory Write Packet
Instruction

Broadcast Block 0

Result output port

External MemoryHost Computer

SING Chip

Result

Result Reduction and Output
Network

any processor
can write (one
at a time
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Collection of small

processors.

512 processors on

one chip

500MHz clock

Peak speed of one

chip: 0.5 Tflops (20

times faster than

GRAPE-6).



Development status

Sample chip delivered May 2006



Chip layout

• 32PEs in 16

groups

• 18mm by 18mm



Prototype board

2nd prototype board. (Designed by Toshi Fukushige)

Difference from the 1st one:

PCI-Express x8 interface

On-board DRAM

Designed to run real applications



Summary

• Gravitational Many-body problem is fun

• Recently, numerical integration of N -body

systems have become useful tool for modelling

observations.

• Special-purpose computers help.


