Gravitational Many-Body Problem

Jun Makino Center for Computational Astrophysics and Division Theoretical Astronomy National Astronomical Observatory of Japan

Talk structure

- **1. Overview of Gravitational Many-Body Problem**
	- *•* **collisionless and collisional systems**
	- *•* **Evolution of collisional systems**
- **2. Some resent topics**
	- *•* **Black hole formation in star clusters**
- **3. Simulation methods**

Gravitational Many-Body Problem

- *•* **Definition**
- *•* **Astronomical examples**
- *•* **Large-***N* **limit "collisionless" systems**
- *•* **Two-body (collisional) relaxation**
- *•* **Evolution of collisional systems**

Definition

$$
m_i \frac{d^2 x_i}{dt^2} = \sum_{j \neq i} f_{ij} \tag{1}
$$

 $x_i, \, m_i$: position and mass of particle i f_{ij} : force from particle *j* to particle *i* **Gravitational (Newtonian) force:**

$$
f_{ij} = Gm_i m_j \frac{x_j - x_i}{|x_j - x_i|^3}, \qquad (2)
$$

G **: Gravitational constant**

Astronomical Examples

Star Clusters Galaxy

Galaxy Group

Clusters of Galaxies

Galaxy Cluster 0024+1645

Yellow: Galaxies in the cluster

Blue: background galaxies (enlarged and stretched through gravitational lens effect)

Large Scale Structure

SDSS Survey Radius: about 1Gpc (1/3 of the Universe)

Constituent of the Universe

70%: Interacts with nothing 25%: Interacts only through gravity

Behavior of Dark Matter

Initial conditions

- *•* **Power spectrum of density fluctuation**
- *•* **Cosmological parameters**

Fairly well understood (if our assumption on the nature of DM is correct)

- **We can simulate the structure formation through dark matter dynamics**
- **(Animation)**

Large-*N* **Limit — collisionless systems**

Collisionless Boltzmann Equation (CBE)

$$
\frac{\partial f}{\partial t} + v \cdot \nabla f - \nabla \Phi \cdot \frac{\partial f}{\partial v} = 0, \qquad (3)
$$

f **: Distribution function in 6-dimensional phase space**

Φ : Gravitational potential, given by:

$$
\nabla^2 \Phi = 4\pi G \rho. \tag{4}
$$

*ρ***: mass density**

$$
\rho = m \int dv f, \tag{5}
$$

Dynamical Equilibrium

Dynamical Equilibrium: Stationary solution of CBE+Poisson Eq.

Star clusters, Galaxies: Roughly in DE Large Scale Structure: NOT in DE (Dynamically too young)

Jeans' Theorem

Stationary solution of CBE in a given potential ϕ **can be expressed as**

$$
f(x,v) = f[I_1(x,v), I_2(x,v), ...],
$$
 (6)

where I_1, I_2, \ldots are integrals of the motion.

Example: Spherically symmetric system: $f = f(E, J)$. (energy and total angular momentum)

The distribution function *f* **for a stellar system with finite mass cannot be Maxwellian, because** *f* must be zero for $E > 0$.

Dynamical and Thermal Equilibrium

Dynamical Equilibrium: Stationary state of CBE

No entropy production (no collision term)

→ **Not in thermal equilibrium Not in LOCAL thermal equilibrium ether (Jeans' Theorem)**

Collision term

Two-body relaxation

Close encounter between two point-mass particles Orbit changes: similar to physical collision Relaxation timescale:

$$
t_r \sim \frac{v^3}{G n m^2 \log \Lambda}
$$

log Λ: Coulomb Logarithm, log Λ *∼* **log** *N*

$$
t_r \sim \frac{N}{\log N} t_d \tag{8}
$$

(7)

*td***: Dynamical timescale** Relaxation timescale \propto Number of particles

Thermal (two-body) relaxation

- *•* **Important for**
	- **– Small-***N* **systems**
	- **– Systems with small dynamical timescale**
- *•* **Examples**
	- **– Star clusters**
	- **– Central region of galaxies**
	- **– Clusters of Galaxies**
	- **– Few-body systems (triple etc)**

Virial Theorem and negative specific heat

For a stellar system in dynamical equilibrium

$$
E = -K = V/2 \qquad (9)
$$

- E **:** Total energy $(= K + V)$
- *K***: Kinetic energy**
- *V* **: Potential energy**
- **If a system loses energy** $(\Delta E < 0),$ **it becomes hotter** $(\Delta K > 0)$

Gravothermal Instability

- **Isothermal gas in a spherical adiabatic wall**
- **Radius:** *R*
- **Mass:** *M*
- **Central density:** $ρ₀$
- **Density at the wall:** *ρ^w*
- $D = \rho_0/\rho_w$
- $D = 1$: No gravity *D* **=** *∞***: Singular solution** $\rho \propto r^{-2}$

Gravothermal Instability(cont'd)

For large $D (D > 709)$:

move heat from the central region to outer Isothermal gas *↓* **central region becomes hotter due to negative specific hear** *↓* **heat flow grows**

Evolution in finite amplitude

- **Numerical calculation Hachisu** *et al.* **(1978) : Gas dynamics**
- **Lynden-Bell & Eggleton (1980): Self-similar solution**
- **Cohn (1980): Direct integration of orbit-averaged Fokker-Planck equation**

Energy Production

Gravitational contruction of star: halted by nuclear fusion

Stellar system: Three-body binary formation

Close encounter of three particles *→* **One binary + one single star: Statistically most likely outcome**

Animation

Three particles

Gravothermal Oscillation

Sugimoto and Bettwieser (1983)

Three curves: Different energy production coefficients (Different *N***)**

*N***-body simulation**

1996 : Confirmed with *N***-body simulation**

Some recent topics

• **Collision of stars and blackhole formation**

IMBH candidate in M82

Matsumoto *et al.* **ApJL 547, L25**

X-ray sources. Brightest one: Corresponds to 1000-solar-mass black hole (Intermidiate-mass BH)

Subaru observation

Host star cluster

McCrady et al. 2003 (astro-ph/0306373) Cluster #11 (MGG-11)

- $\sigma_r = 11.4 \pm 0.8 \text{km/s}$
- half-light radius 1.2 ± 0.17 pc
- **kinetic mass** $3.5 \pm 0.7 \times 10^5 M_{\odot}$
- *•* **Age** *∼* **10Myrs.**

Very short relaxation time (less than 10Myrs)

A possible scenario

- **1. Massive stars sink to the center through relaxation**
- **2. Supermassive star forms through collision and merging**
- **3. This star collapses to a BH**

Simulation

Portegies Zwart et al., Nature, Apr 15, 2004

This scinario seems to work

GRAPE-6

Special-purpose computer for *N***-body simulations. 64 Tflops peak — World's fastest computer as of 2002.**

Basic idea of GRAPE

Special-purpose hardware for force calculation General-purpose host for all other calculation

Time integration, Force calculation IO, etc Flexibility High performance

GRAPE-6 Processor pipeline

Calculates gravitational force, its first time derivative and potential.

Evolution of GRAPE systems

Year

Next-Generation GRAPE — GRAPE-DR

- *•* **Planned peak speed: 2 Pflops**
- *•* **New architecture wider application range than previous GRAPEs**
- *•* **primarily to get funded**
- *•* **No force pipeline. SIMD programmable processor**
- *•* **Planned completion year: FY 2008 (early 2009)**

Processor architecture

- *•* **Float Mult**
- *•* **Float add/sub**
- *•* **Integer ALU**
- *•* **32-word registers**
- *•* **256-word memory**
- *•* **communication port**

Chip structure

Result output port

Collection of small processors.

512 processors on one chip 500MHz clock

Peak speed of one chip: 0.5 Tflops (20 times faster than GRAPE-6).

Development status

Sample chip delivered May 2006

Chip layout

- *•* **32PEs in 16 groups**
- *•* **18mm by 18mm**

Prototype board

2nd prototype board. (Designed by Toshi Fukushige) Difference from the 1st one:

- **PCI-Express x8 interface**
- **On-board DRAM**
- **Designed to run real applications**

Summary

- *•* **Gravitational Many-body problem is fun**
- *•* **Recently, numerical integration of** *N***-body systems have become useful tool for modelling observations.**
- *•* **Special-purpose computers help.**