Gravitational Many-Body Problem

Jun Makino Center for Computational Astrophysics and Division Theoretical Astronomy National Astronomical Observatory of Japan

Talk structure

- 1. Overview of Gravitational Many-Body Problem
 - collisionless and collisional systems
 - Evolution of collisional systems
- 2. Some resent topics
 - Black hole formation in star clusters
- 3. Simulation methods

Gravitational Many-Body Problem

- Definition
- Astronomical examples
- Large-N limit "collisionless" systems
- Two-body (collisional) relaxation
- Evolution of collisional systems

Definition

$$m_i rac{d^2 x_i}{dt^2} = \sum\limits_{j
eq i} f_{ij}$$

2

 x_i, m_i : position and mass of particle i f_{ij} : force from particle j to particle iGravitational (Newtonian) force:

$$f_{ij}=Gm_im_jrac{x_j-x_i}{|x_j-x_i|^3},$$

G: Gravitational constant

Astronomical Examples

Star Clusters

Galaxy

Galaxy Group

Clusters of Galaxies

Galaxy Cluster 0024+1645

Yellow: Galaxies in the cluster

Blue: background galaxies (enlarged and stretched through gravitational lens effect)

Large Scale Structure

SDSS Survey Radius: about 1Gpc (1/3 of the Universe)

Constituent of the Universe

70%: Interacts with nothing25%: Interacts only through gravity

Behavior of Dark Matter

Initial conditions

- Power spectrum of density fluctuation
- Cosmological parameters

Fairly well understood (if our assumption on the nature of DM is correct) We can simulate the structure formation through

- dark matter dynamics
- (Animation)

Large-N Limit — collisionless systems

Collisionless Boltzmann Equation (CBE)

$$\frac{\partial f}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} f - \boldsymbol{\nabla} \Phi \cdot \frac{\partial f}{\partial \boldsymbol{v}} = \boldsymbol{0}, \qquad (3)$$

f: Distribution function in 6-dimensional phase space

 Φ : Gravitational potential, given by:

$$\nabla^2 \Phi = 4\pi G \rho. \tag{4}$$

 ρ : mass density

$$\boldsymbol{\rho} = \boldsymbol{m} \int \boldsymbol{d} \boldsymbol{v} \boldsymbol{f}, \tag{5}$$

Dynamical Equilibrium

Dynamical Equilibrium: Stationary solution of CBE+Poisson Eq.

Star clusters, Galaxies: Roughly in DE Large Scale Structure: NOT in DE (Dynamically too young)

Jeans' Theorem

Stationary solution of CBE in a given potential ϕ can be expressed as

$$f(x,v) = f[I_1(x,v), I_2(x,v), ...],$$
 (6)

where $I_1, I_2, ...$ are integrals of the motion.

Example: Spherically symmetric system: f = f(E, J). (energy and total angular momentum)

The distribution function f for a stellar system with finite mass cannot be Maxwellian, because fmust be zero for E > 0.

Dynamical and Thermal Equilibrium

Dynamical Equilibrium: Stationary state of CBE

No entropy production (no collision term)

 \rightarrow Not in thermal equilibrium Not in LOCAL thermal equilibrium ether (Jeans' Theorem)

Collision term

Two-body relaxation

Close encounter between two point-mass particles Orbit changes: similar to physical collision Relaxation timescale:

$$t_r \sim rac{v^3}{Gnm^2\log\Lambda}$$

 $\log \Lambda \colon$ Coulomb Logarithm, $\log \Lambda \sim \log N$

$$t_r \sim \frac{N}{\log N} t_d \tag{8}$$

 t_d : Dynamical timescale Relaxation timescale \propto Number of particles

Thermal (two-body) relaxation

- Important for
 - Small-N systems
 - Systems with small dynamical timescale
- Examples
 - Star clusters
 - Central region of galaxies
 - Clusters of Galaxies
 - Few-body systems (triple etc)

Virial Theorem and negative specific heat

For a stellar system in dynamical equilibrium

$$\boldsymbol{E} = -\boldsymbol{K} = \boldsymbol{V}/\boldsymbol{2} \quad (9)$$

- E: Total energy (=K+V)
- K: Kinetic energy
- V: Potential energy
- If a system loses energy $(\Delta E < 0)$, it becomes hotter $(\Delta K > 0)$

Gravothermal Instability

- Isothermal gas in a spherical adiabatic wall
- Radius: R
- Mass: M
- Central density: ho_0
- Density at the wall: ho_w
- $D=
 ho_0/
 ho_w$
- D=1: No gravity $D=\infty$: Singular solution $ho\propto r^{-2}$

Gravothermal Instability(cont'd)

For large D (D > 709):

move heat from the central region to outer Isothermal gas \downarrow central region becomes hotter due to negative specific hear \downarrow heat flow grows

Evolution in finite amplitude

- Numerical calculation Hachisu *et al.* (1978) : Gas dynamics
- Lynden-Bell & Eggleton (1980): Self-similar solution
- Cohn (1980): Direct integration of orbit-averaged Fokker-Planck equation

Energy Production

Gravitational contruction of star: halted by nuclear fusion

Stellar system: Three-body binary formation

Close encounter of three particles \rightarrow One binary + one single star: Statistically most likely outcome

Animation

Three particles

Gravothermal Oscillation

Sugimoto and Bettwieser (1983)

Three curves: Different energy production coefficients (Different N)

N-body simulation

1996: Confirmed with N-body simulation

Some recent topics

• Collision of stars and blackhole formation

IMBH candidate in M82

Matsumoto et al. ApJL 547, L25

X-ray sources. Brightest one: Corresponds to 1000-solar-mass black hole (Intermidiate-mass BH)

Subaru observation

Host star cluster

McCrady et al. 2003 (astro-ph/0306373) Cluster #11 (MGG-11)

- $\sigma_r = 11.4 \pm 0.8 \mathrm{km/s}$
- \bullet half-light radius $1.2\pm0.17 {\rm pc}$
- ullet kinetic mass $3.5\pm0.7 imes10^5M_{\odot}$
- Age ~ 10Myrs.

Very short relaxation time (less than 10Myrs)

A possible scenario

- 1. Massive stars sink to the center through relaxation
- 2. Supermassive star forms through collision and merging
- 3. This star collapses to a BH

Simulation

Portegies Zwart et al., Nature, Apr 15, 2004

This scinario seems to work

GRAPE-6

Special-purpose computer for N-body simulations. 64 Tflops peak — World's fastest computer as of 2002.

Basic idea of GRAPE

Special-purpose hardware for force calculation General-purpose host for all other calculation

Time integration,Force calculationIO, etcFlexibilityFlexibilityHigh performance

GRAPE-6 Processor pipeline

Calculates gravitational force, its first time derivative and potential.

Evolution of GRAPE systems

Year

Next-Generation GRAPE — GRAPE-DR

- Planned peak speed: 2 Pflops
- New architecture wider application range than previous GRAPEs
- primarily to get funded
- No force pipeline. SIMD programmable processor
- Planned completion year: FY 2008 (early 2009)

Processor architecture

- Float Mult
- Float add/sub
- Integer ALU
- 32-word registers
- 256-word memory
- communication port

Chip structure

Result output port

Collection of small processors.

512 processors on one chip 500MHz clock

Peak speed of one chip: 0.5 Tflops (20 times faster than GRAPE-6).

Development status

Sample chip delivered May 2006

Chip layout

: E			.	1,1.			L.J.	1.1.1			<u> </u>						╷╷╷		ji i	1) 		_î_ 	1.1.	
		FEDD	PEO1	PE 07	PE 02	PE04	PE D4	PEDO	PEOZ	PEQ1	FEOD				PE CO	PEQI	PEQZ	PEQO	PEGA	FED4	FED3	FEOZ	PE01	PEOD	
	PEDS	PEDB	PE 07	PE 08	PE 09	PE10	FE 10	PEDS	PE 0.5	FED7	FE 06	FEOS	E	FE 00	FE CO	PE07	PEOB	PEQ9	PE 10	PE 10	PEDP	PEOB	PE 07	PE06	PE05
	PE11	PE12	PE10	PE14	PE 1.5	PE16	PE 16	PE 15	PE 14	PE13	PE12	PE11	F-	PE11	PE12	PE13	PE14	PE15	PE18	PE 16	PE 10	PE 14	PEID	PE1Z	FEII
_	PE 17	PC 16	PE 19		PEZI	PEZZ	PE 22	PE 21		PC 19	PE 18	PE17		PE17	PE18	PE19		PE21	PE22	FEZZ	PE21		PE 19	PE 18	PE 17
	PE 23	PE 24	PE 25		PE27	PE28	PE28	PE 27		PE 25	PE 24	PE 23		PE 23	PE 24	PE25		PE27	PE28	PE 26	PE 27		PE 25	FE24	PE23
-	PE 2	9 PE 3	PE31	PE 20	PE 26	1		PEZ6	PE70	PE91 FI	E30 F	E 79		PEZ	9 PEN	PE31	FE ZO	FE 26	20		FE26	PE20	FE31 P	E 30 P	t 79
	PEZ	e PEO	PERI	PE20	PEZE			PEZE	PE 20	PE31 P	520 P	E ZP	1	PEZ	e PEO	0 PEO	PE ZD	PE ZE			PE26	PE20	PE31 P	E 20 P	E 79
	FE 73	FE 74	FEZD		PE27	PE 28	PETS	PE 17		FE ZD	FE 74	FE ZO		FE ZO	PE 24	PEZ5		PC27	PEZB	FE 78	FE 27		PE ZO	PE74	PEZO
	PE 17	PC 18	PC 19		PE21	PE22	PE 22	FE 21		PE 19	PE 18	PE17		PE 17	PE 18	PE 19		PE21	PE22	PE 22	PE21		PE 19	PE 15	PE17
=	PE11	PE 12	PE13	PE 14	PE15	PE1E	FE 16	FE 15	FE 14	PE13	PE 12	PE11	1.110	PE11	PE12	PE13	PE14	PE15	PE 16	PE 16	PE 15	PE 14	PE13	PE12	PE11
	PEDS	PEDE	PE 07	PE OB	PEOP	PE 10	PE 10	PE DØ	FEDS	PED7	PE 06	PE 05		PE 05	PE 06	PE07	PEOB	PEOP	FE 1D	PE 10	PEDB	PEOB	PE 07	PEOE	PE05
		PEDD	PEO1	PE 02	PEO3	PE04	PED4	FED3	PE D2	PE01	PE OD				PE 00	PE01	PE02	PEOD	FEC4	PE D4	PED3	PE 02	PE01	PEOD	
		PEDD	PE01	PE 02	PE 03	PE04	FED4	FED3	PED2	PE01	PEOD			AYY SA	PE 00	PE01	PE02	FEOD	PECH	PED4	PED3	PEO2	PE01	PEOD	
	PEDS	PEDE	PE 07	PE OB	PE 02	PE10	PE 10	FED®	FEDS	PED7	PEOE	PEOS	Ĩ	PE 05	PE 06	PE07	PEOB	FEO9	FE1D	PE 10	PEDE	PEOB	PE 07	PEOF	PE05
	PE11	PE 12	PE18	PE14	PE 15	PE16	FE 16	PE 15	PE 14	PE18	PE 12	PE11	F	PE11	PE12	PE13	PE14	PE15	PE16	PE 16	PE 16	PE 14	PE13	PE12	FE11
	PE 17	PC 18	PE 19		PE21	PEZZ	PE22	PE 21		PC 19	PE 18	PE17		PE 17	PE 18	PEID		PE21	PE27	FE 72	PE21		PE 19	PE18	PE17
	PE 23	PE 24	PE 25		PE27	PE28	PE 28	PE 27		PE 25	PE 24	PE 23		PE 23	PE24	PE25		PE27	PE28	PE 28	PE 27		PE 25	PE24	PE23
	PE 2	9 FE3	PE31	PE 20	PE 26	g		PE26	PE 20	PE31 P	E20 P	E 28		PE2	e PES	0 PE31	PE 20	PE 26	Ter.		PE26	PE20	PE31 P	E30 P	£ 28
	PE 2	9 PE3	PE31	PE 20	PE 26			PT 26	PF 20	erat e	530 P	F 70		ero	o PEA	PEM	PE 20	PF 26			PE26	PE20	PE31 P	E 30 P	629
	PE 23	PE24	PE25		PE27	PE28							28 -				1		. House	PE 26	PE27		PE 25	PE24	PE23
	PE 17	PE 18	PE 19		PE21	PEZZ	PE28	PE 21		PE 19	PE 18	PE 17		PE 17	PE 18	PE18		PE21	PE27	FE 72	PE21		PE18	PE18	PE17
	PE11	PE 12	PE13	PE14	PE15	PE1E	ET 16	ET 15	PT 14	PEIN	PE 12	85.11	3	85.11	PE12	PE 13	PEIA	PE 15.	PF 15	PE 16	PE 16	PE14	PE13	PE12	FE11
	FE 05	FE 06	FE07	PE06	PE09	PE 10	PE 10	PED9	PEOS	PE07	PEOB	PEOS		PE 05	PEOB	PE07	PEOB	PEOP	PE10	PE 10	FE 09	FEOB	PE07	PE06	PE05
F		FEOD	PEQ1	PE 07	PEOD	PE04	PEDA	PE03	PE02	PEO1	FE OD	-			PEOP	PE01	PE02	PEO3	PECH	FE (14	FEOS	FEOT	PEGI	PEOD	
							-	1		ller (S	12.11						. AT 31		-		Taili	i Santa bi	الفقر حاد	-	

- 32PEs in 16 groups
- 18mm by 18mm

Prototype board

2nd prototype board. (Designed by Toshi Fukushige) Difference from the 1st one:

- **PCI-Express x8 interface**
- **On-board DRAM**
- Designed to run real applications

Summary

- Gravitational Many-body problem is fun
- Recently, numerical integration of *N*-body systems have become useful tool for modelling observations.
- Special-purpose computers help.