Current status of GRAPE Project

Jun Makino

University of Tokyo

Talk overview

- *•* **GRAPE Project**
- *•* **Science with GRAPEs**
- *•* **GRAPE-DR: Next-Generation GRAPE**

GRAPE project

- *•* **basic idea**
- *•* **hardware**
- *•* **performance Direct, Tree, P³^M**
- *•* **GRAPEs in the world**

GRAPE project: Rationale

GOAL:

Design and build specialized hardware for simulation of stellar systems.

Rational:

You can do larger simulations (better resolution) for same amount of money.

Basic idea of GRAPE

Special-purpose hardware for force calculation General-purpose host for all other calculation

Flexibility High performance

Special-purpose hardware

- *•* **Pipeline processor specialized for the interaction calculation**
	- **– Can use large number of processors**
	- **– All processors work in parallel**
	- *→* **High performance**

General-purpose host computer

- *•* **"High-level" language (Fortran, C, C++...)**
- *•* **Existing codes with "minor" modifications**
- *•* **Individual timestep, Tree algorithm**

GRAPE Pipeline processor

- ×. 2乗は1 operation, -1.5乗は多項式近似でやるとして10operation 位に相当する. 総計24operation.

「∑」は足し込み用のレジスタ. N回足した後結果を右のレジスタに転送する.

図2. N体問題のj-体に働く重力加速度を計算する回路の概念図.

Chikada 1988

GRAPE machines

1989 GRAPE-1 240 MF Low accuracy(LA) 1990 GRAPE-2 40 MF High accuracy(HA) 1991 GRAPE-3 15 GF LA, custom chip 1995 GRAPE-4 1.08 TF HA, custom chip 1998 GRAPE-5 40*n GF LA, 2 pipelines in a chip 2001 GRAPE-6 64 TF HA, 6 pipelines in a chip

Molecular Dynamics

- **1992 GRAPE-2A 120MF**
- **1996 MD-GRAPE 2.4GF custom chip 2001 MDM 75 TF RIKEN**
- **2006? PE 0.6PF RIKEN**

Evolution of peak performance

Year

Why GRAPEs can do better than microprocessors?

- **Intel, AMD and IBM are spending 100s or 1000s of M\$ to develop processors.**
- **How a small group of astronomers can possibly outperform them?**

Why GRAPEs can do better than microprocessors?

- **Intel, AMD and IBM are spending 100s or 1000s of M\$ to develop processors.**
- **How a small group of astronomers can possibly outperform them?**
- **Answer:**
- **Intel is not designing their chip for** *N***-body problem.**
- **In fact, not for scientific computing in general...**

Architecture of modern processors

- **Cache**
- **Cache prefetch**
- **Branch prediction**
- **Speculative execution**
- **Out-of-order execution**

...... and all other stuff you don't want to get into.

Intel Pentium 4 chip

A very small fraction of the chip is used for floating-point unit.

Total transistors *[∼]* **¹⁰⁸ Floating-point unit** $\sim 10^5$ **More than 99.9% of silicon is used for things other than real arithmetic operations.**

Evolution of microprocessors

Why got stuck at 4?

Two "reasons":

- *•* **"superscalar" approach with more than 4 execution units gives very small increase in performance**
- *•* **bandwidth to main memory is limited**

Superscalar?

- *•* **You write sequential program (single stream of instructions)**
- *•* **the processor tries to figure out which instructions can be executed in parallel**
- *•* **CDC 6600 is one of the first machines**

as opposed to:

VLIW, in which the compiler tries to find parallelism (Multiflow, Intel Itanic)

Superscalar?

- *•* **Your program is sequential (single stream of instructions)**
- *•* **the processor tries to figure out which instructions can be executed in parallel**
- *•* **CDC 6600 is one of the first machines**

as opposed to:

VLIW, in which the compiler tries to find parallelism (Multiflow, Intel Itanium)

Why not more than 4?

- **partly because of the set of benchmark programs choosen.**
- **Example:**
- **SPECfp92 originally contained "matrix300" At some point this was dropped, essentially because it was too easily parallelized.**
- **Benchmark designers chose problems/programs which are difficult to parallelize, and conclude that problems are generally not parallelizable.**

Memory bandwidth

- **This is a real problem.**
- *∼* **1***,* **000 processors can fit into a chip. But how you can get data in and out?**
- **1,000 1GHz processors**
- *→* **24 TB/s of memory bandwidth.**
- **Intel Pentium 4 : 6.4 GB/s. Less than the need of processor.**
- **(This is why you need cache)**

The GRAPE approach

- *•* **parallelism: All of** *^N***² (or** *N* **log** *N* **for treecode) interactions can be evaluated in parallel: There is much more parallelism than you can possibly use.**
- *•* **Memory bandwidth:**
	- **– pipeline processor: needs 3 words for 30 operations. Reduction of a factor of 30.**
	- **– (real/vitual) multiple pipelines calculate the forces from one particle to many particles: Reduction of a factor of 50 (in GRAPE-6)**

In total, reduction by a factor *>* **1,000**

The GRAPE approach

General-purpose

GRAPE

- **Some history**
	- *•* **GRAPE-1**
	- *•* **GRAPE-2**
	- *•* **GRAPE-3**
	- *•* **GRAPE-4**
	- *•* **GRAPE-6**

GRAPE-1 — 1989

GRAPE-1 pipeline processor

240 Mflops peak speed

GRAPE-2 — 1990

GRAPE-2 Summary

- *•* **Real floating-point arithmetic**
- *•* **VME-bus for host communication**
- *•* **40 Mflops peak speed (sounds slow, but 15 years ago it was fast)**

GRAPE-3 — 1991

GRAPE-3 chip

GRAPE-4 — 1995

GRAPE-4 pipeline

GRAPE-4 processor board

Structure of GRAPE-4

GRAPE-6 — 2001

- *•* **processor chip**
- *•* **processor module**
- *•* **processor board**
- *•* **total system**

Pipeline LSI

- \bullet 0.25 μ m design rule **(Toshiba TC-240, 1.8M gates)**
- *•* **90 MHz clock**
- *•* **6 pipelines**
- *•* **one predictor pipeline**
- *•* **31 Gflops /chip**

Pipeline LSI

Essentially GRAPE-4 processor board on a chip

- *•* **Host Interface**
- *•* **Memory Interface**
- *•* **Force calculation pipeline**
- *•* **Control logic**
GRAPE-6 processor module

GRAPE-6 processor module

GRAPE-6 processor board

GRAPE-6 Processor board

The full 64 Tflops GRAPE-6 system

- *•* **4-host, 16-board "block" with dedicated network**
- *•* **4 (currently 3) "blocks" connected through GbE network**

Combination of host network solution and dedicated network solution.

The 64-Tflops GRAPE-6 system

Present 64-Tflops system.

4 blocks with 16 host computers.

The host "PC Cluster"

Some performance numbers

Some performance numbers (2)

Some performance numbers (3)

http://jun.artcompsci.org/softwares/pC++tree/index.html

BabyGRAPE (aka microGRAPE)

Fukushige et al 2005 Single PCI card with peak speed of 123 Gflops Commercial version: http://www.metrix.co.jp/micro grape eng.html

24-nodes BabyGRAPE Cluster

Pentium 4 hosts, GbE connection.

Parallel BabyG Performance

Parallel tree TreePM

astro-ph/0504095, 0504407

GRAPE6 worldwide

incomplete **list of GRAPE-6s**

AMNH 4 G6s Amsterdam ARI Heidelberg 32 BGs NAOJ 12 G6s Bonn Cambridge Drexel 2 G6s? Indiana Marseilles McMaster Michigan

MPIA Munich Rochester 32 BGs TIT Tsukuba 256 BGs (06?)

Science with GRAPE

- *•* **Cosmology (CDM halo)**
- *•* **Globular clusters**
- *•* **Galactic nuclei (black hole binaries)**
- *•* **Planet formation**
- *•* **Star formation**
- *•* **Young star cluster (Portegies Zwart)**
- *•* **Galactic dynamics**
- *•* **galaxy formation**

• **...**

CDM halo simulation

GRAPE-5 Cluster Simulated Cluster

Density profiles

Dependence on N

1M, 14M and 29 M

Effect of timestep

NFW or Moore?

Or something in between?

Work in progress

Power-Law Cosmology $P(k) \propto k^n$ **Understanding the origin of the cusp**

 $n = -2.8$ $n = -2$ $n = -1$ **CDM is in between** *−***2***.***8 and** *−***2**

Power-law cosmology

n **=** *−***2***.***8 resulted in shallower cusp. Cusp slope dependent on the initial spectrum?**

Globular clusters with and without IMBH

- *•* **M15 without BH**
- *•* **GCs with BH**

Central Black Hole in Globular Clusters?

Observation + Interpretation

3000 *M¯* **black hole? (Gerssen et al 2002)**

N-body simulation without BH

Baumgardt et al., ApJ 2003, 582, L21.

velocity dispersion; Right: Surface density.

We "found" BH, though there wasn't

Inversion of surface number density of bright stars gives too small central velocity dispersion without central BH.

Estimated BH mass = 80 M_{\odot} . If scaled to M15, \sim 3 × 10³*M*^{\odot} (Gerssen *et* $al.: \sim 3 \times 10^3 M_{\odot}$

Is there any globular cluster with central BH?

- **Baumgardt, J.M. and Hut (ApJL 620, 238, 2005)**
- **How would it look like?**
- **Evolution of globular clusters with central BH for Hubble time.**

Profile evolution

Surface brightness profile becomes King7-like, almost independent of initial profile and BH mass (in the range of 0.1% to 1%)

Globular cluster summary

- *•* **Globular clusters with central luminosity cusp do not contain massive central BH. They are really clusters in deep core collapse, with NS and WD dominating the central cusp.**
- *•* **Most likely place to find massive central BH is some of normal-looking clusters with relatively large cores.**

Galactic nuclei with SMBH

- **What will happen to SMBH binary after a galaxy merger?**
- **(talks by Moore, Stadel)**

Begelman, Blandford and Rees (1980) Theoretical argument:

Evolution will stop when BH binary cleaned out its neighbourhood (loss cone depretion)

JM 1997

- King model $(W_o = 7)$ merger
- *•* **N 2K 256K**
- $M_{BH} = M_{Gal}/32$
- *•* **GRAPE-4 direct calculation (NBODY1)**
- *•* **potential between field particles is softened**
- *•* **No GW**

Binding energy

Hardening rate

Quinlan 1997

- *•* **Plummer model, 2 BHs**
- *•* **N 6.25K 200K**
- \bullet $M_{BH} = M_{Gal}/100$
- **SCF** + direct

Result

Independent of N for $N > 100$ K???
Milosavljević & Merritt 2001

- \bullet $\rho \propto r^{-2}$ cusp model with BH
- *•* **N 8K 32K**
- $M_{BH} = M_{Gal}/32$
- *•* **Tree+direct**
- *•* **Tree before BH binary formed (N=256K) Direct after BH formation (Sun Starfire)**

Result

Chatterjee, Hernquist & Loeb 2003

- *•* **Same method as Quinlan 1997**
- *•* **N up to 400K**
- Various M_{BH}
- **Claim:** No N dependence for $N > 200K$.

Summary of previous results

Mess

Summary of previous results

Mess

- *•* **Numerical results contradict with each other**
- *•* **All numerical results contradict with the theoretical prediction of loss cone depletion**

What's wrong?

If we knew, we could have done better!

- *•* **Too small N?**
- *•* **Something wrong with codes?**
- *•* **Initial condition?**
- *•* **All of above combined?**

New calculations

- **JM and Funato 2004 Goal:**
	- *•* **For simple model**
	- *•* **in which loss cone "should" form**
	- *•* **using simple numerical method**
	- *•* **perform large-***N***, long calculations**

Simulation setup

- *•* **Single King model (***W^o* **= 7), two BH**
- *•* **N 2K 1M**
- $M_{BH} = M_{Gal}/100$
- *•* **Direct method on GRAPE-6**
- *•* **Force from BH unsoftened, handled on the host computer**

Binding energy

Hardening rate

Dependence on binding energy

Summary

• **Result is not inconsistent with the theory of loss cone depletion**

loss cone ?

loss cone in phase space — (*E, J***)**

particles with *J <* **0***.***01 depleted**

particles accumulate in small *J***, almostunbound orbit.**

Loss cone is actually visible.

What was wrong with previous works?

- *•* **JM 1997**
	- **– Simulation time was too short**
- Milosavljević & Merritt 2001
	- **– N was also too small**
- *•* **SCF+BH**
	- **– Not clear...**

Next-Generation GRAPE — GRAPE-DR

- *•* **Budget approved. (1.5M\$** *×* **5 years)**
- *•* **Planned peak speed: 2 Pflops**
- *•* **New architecture wider application range than previous GRAPEs**
- *•* **Planned completion year: 2008**

GRAPE-DR processor structure

Result output port

Collection of small processor, each with ALU, register file (local memory)

One chip will integrate (hopefully) 1024 processors Single processor will run at 500MHz clock (2 operations/cycle).

Peak speed of one chip: 0.5 Tflops (20 times faster than GRAPE-6).

Difference from previous GRAPE architecture

• **No hardwired pipeline, simple SIMD parallel processor.**

Development codename: SING (*S***ing** *i***s** *n***ot** *G***RAPE) (Eiichiro Kokubo)**

- *•* **Much like the Connection Machine**
- *•* **Performance hit: factor 3-10? (We'll see)**

Comparison with FPGA

- *•* **much better silicon usage (ALUs in custom circuit, no programmable switching network)**
- *•* **(possibly) higher clock speed (no programmable switching network on chip)**
- *•* **easier to program (no VHDL necessary; assembly language and compiler instead)**
- *•* **major drawback: somebody (***which means me...***) need to develop the chip**

Why we changed the architecture?

- *•* **To get budget (***N***-body problem is too narrow...)**
- *•* **To allow wider range of applications**
	- **– Molecular Dynamics**
	- **– Boundary Element method**
	- **– Dense matrix computation**
	- **– SPH**
- *•* **To allow wider range of algorithm**
	- **– FMM**
	- **– Ahmad-Cohen**
- *•* **To try something new.**

Why we changed the architecture?

- *•* **To get budget (***N***-body problem is too narrow...)**
- *•* **To allow wider range of applications**
	- **– Molecular Dynamics**
	- **– Boundary Element method**
	- **– Dense matrix computation (Linpack, TOP500!)**
	- **– SPH**
- *•* **To allow wider range of algorithm**
	- **– FMM**
	- **– Ahmad-Cohen**
- *•* **To try something new.**

How do you use it?

- *•* **GRAPE: We'll write the necessary software. Move from GRAPE-6 will be less painful than move from GRAPE-4 to GRAPE-6.**
- *•* **Matrix etc ... RIKEN/NAOJ will do something**
- *•* **New applications:**
	- **– Compiler will** *someday* **be provided**
	- **– In the meantime, you need to write the kernel code in assembly language**

PE architecture

- *•* **Float Mult (24 bit mantissa, with full 49 bit output)**
- *•* **Float add/sub (60 bit mantissa)**
- *•* **Integer ALU (72 bit)**
- *•* **32-word (72 bit) general-purpose register file**
- *•* **256-word (72 bit) memory**
- *•* **ports to shared memory (shared by 32 processors)**

How do you really use it?

Machine language: 110 bits horizontal microcode

Assembly language

var vector long xi hlt flt64to72 var vector long yi hlt flt64to72 var vector long zi hlt flt64to72 var vector short idxi hlt fix32to36ru ... bm vxj \$lr0v vlen 1 bm mj lmj bm eps2 leps2 bm idxj lidxj nop upassa idxi idxi \$t moi 1 uxor \$ti lidxj \$r8v moi 0 upassa il"0" \$t \$t mi 1 upassa il"1" \$ti \$t mi 0 moi 2 upassa \$ti \$ti \$t moi 0 nop fsub \$lr0 xi \$r6v \$t fsub \$lr2 yi \$r10v ; fmul \$ti \$ti \$t fsub \$lr4 zi \$r14v fmul \$r10v \$r10v \$r18v ; fadd \$t leps2 \$t fmul \$r14v \$r14v ; fadd \$fb \$ti \$t fadd \$fb \$ti \$r18v \$t

...

High-level architecture

- *•* **Single card: 4 chips, PCI-X/PCI-E/Hypertransport(?) interface, 2 Tflops.**
- *•* **Host network: 512 node, fast GbE or 10GbE switch**
- **Difference from GRAPE-6:**
	- *•* **No custom network**
	- *•* **No large card**

Development schedule

2005 Spring Chip logical design 2005 Fall Chip physical design 2006 Fall First sample chip 2007 Spring Prototype board 2008 Spring Large parallel system

Summary

- *•* **GRAPE project has successfully developed very high performance computers for astrophysical particlebased simulations.**
- *•* **The next machine, GRAPE-DR, will have wider application range than traditional GRAPEs**