
Formura – –

Jun Makino
Jun 17, 2020 Internal seminar

Talk overview

• What is the problem? — The efficiency of explicit, regular-grid calcula-
tions on K and Fugaku

• What can be done — cache blocking or more?

• “Simple” experiment and result

• The real reason for the low efficiency

• What can/should be done next?

What is the problem? — The efficiency of
explicit, regular-grid calculations on K and
Fugaku

• Efficiency of all known regular-grid codes on both K or Fugaku is not
very high. 15% or less.

• This is MUCH lower than the theoretical limit determined by the memory
bandwidth.

• A very well-designed code on PEZY-SC2 can reach to 18%. (achieved
by temporal blocking)

• Relative memory bandwidth (B/F) of SC2: 0.03, K:0.5, Fugaku:0.36.

Typical implementation of regular-grid codes
on K/Fugaku

Implement the numerical scheme as a large number of DO (or for) loops,
each represents relatively simple operation. For example, something like

do k=1,nnz

do j=1,nny

do ii=1,nx

i=ii+2

r_x(i,j,k) = ((r_p(i-2,j,k)-r_p(i+2,j,k))

* -8*(r_p(i-1,j,k)-r_p(i+1,j,k)))*c

enddo

enddo

enddo

which loops over all elements of the grid assigned to one MPI process.

Why in this form?

• The best way to get good performance on vector supercomputers of
1980s and 1990s.

• With sufficient memory bandwidth (B/F=4) , the loops of this style can
achieve near-peak performance.

• Worked very well on vector machines (up to NEC SX-8)

• Not very efficient on machines with cache hierarchy — efficiency will
be 5-10% if B/F ∼ 0.5.

• Actually, the data in L1 cache is reused a few times, resulting in some-
what better efficiency.

Efficiency estimate

r_x(i,j,k) = ((r_p(i-2,j,k)-r_p(i+2,j,k))

* -8*(r_p(i-1,j,k)-r_p(i+1,j,k)))*c

• Looked as a vector operation, this statement requires one vector load,
one vector store and five operations. (or one FMA and three non-FMA
operations).

• Necessary B/F value to reach the peak performance = 16/8 = 2. Effi-
ciency = 16% if B/F=0.5

• Finite difference in y-direction might hit L1 cache

• Finite difference in z-direction would not hit L1 cache

• Thus, overall efficiency ∼ 10%

What can be done — cache blocking or more?
The basic idea of cache blocking:

• If we read-in some block of grid point
into the cache (usually the last-level
cache) and apply all operations for
one timestep, we can apply some-
thing like 2000 operations per grid
point.

• Thus, 80 bytes (5 variable, read and
write) for 2000 operations: required
B/F = 0.04.

• ANY machine other than PEZY-SC2
and MN-Core has much more than
enough memory bandwidth.

Entire Grid

read in(with necessary

boundary data

update

write back

“Simple” experiment and result

• First experiment

• Second experiment

First experiment
Euler equations of fluid

r_t = -r*u_x - r*v_y - r*w_z - r_x*u - r_y*v - r_z*w

u_t = -p_x*(r)**(-1) - u*u_x - u_y*v - u_z*w

v_t = -p_y*(r)**(-1) - u*v_x - v*v_y - v_z*w

w_t = -p_z*(r)**(-1) - u*w_x - v*w_y - w*w_z

p_t = -gm*p*u_x - gm*p*v_y - gm*p*w_z - p_x*u - p_y*v - p_z*w

(artificial viscosity not included) integrated with SL4TH3 scheme (space 4th
order collocation , time 3rd order Hermite).

qx =
1

12h
(q(−2) − 8q(−1) + 8q(+1) − q(+2)) + O(h4),

qxx =
1

12h2
(−q(−2) + 16q(−1) − 30q(0) + 16q(+1) − q(+2)) + O(h4)

Code generation
FORTRAN77 program is generated from Formura-like input (used in the

yet-unfinished SP4TH3 paper). The equations in the previous slide is from
that input file.

Example of the generated code:

r_t =-r_z*w_p(i,j,k)-r_y(i,j,k)*v_p(i,j,k)

* -r_x(i,j,k)*u_p(i,j,k)-r_p(i,j,k)*w_z

* -r_p(i,j,k)*v_y(i,j,k)-r_p(i,j,k)*u_x(i,j,k)

u_t =-u_z*w_p(i,j,k)-u_y(i,j,k)*v_p(i,j,k)

* -u_p(i,j,k)*u_x(i,j,k)-p_x(i,j,k)*rinv

• Test run for 16x16x16 box, so that all data can fit to L2 cache

• Both Fujitsu FORTRAN compiler and gfortran generate reasonable ma-
chine code

The parser
A simple recursive descent parser
code
written for
Introduction of numerical calculation using Crystal

https://github.com/jmakino/numerical-calculation-with-crystal/blob/master/src/parser.cr
http://jun-makino.sakura.ne.jp/articles/intro_crystal/face.html

Performance measured

• Around 10Gflops on my note (Skylake without AVX512. Peak clock:
3.2GHz)

• Around 4Gflops on FX700 (The same processor as Fugaku. 512-bit
SVE, 2GHz)

Performance of my note is still low. The theoretical peak (with FMUL ratio
taken into account) = 28Gflops.

FX700 performance surprizingly low

Machine code example
AVX2
movq -1704(%rbp), %rdx

vmovapd (%rdx,%rax), %ymm11

movq -1712(%rbp), %rdx

vsubpd (%rdx,%rax), %ymm11, %ymm11

movq -1688(%rbp), %rdx

vmovapd (%rdx,%rax), %ymm0

movq -1696(%rbp), %rdx

vsubpd (%rdx,%rax), %ymm0, %ymm0

movq -1736(%rbp), %rdx

vmovapd (%rdx,%rax), %ymm14

movq -1744(%rbp), %rdx

vsubpd (%rdx,%rax), %ymm14, %ymm14

vfnmadd132pd %ymm7, %ymm0, %ymm11

movq -1720(%rbp), %rdx

vmulpd %ymm12, %ymm11, %ymm8

vmovapd (%rdx,%rax), %ymm0

movq -1728(%rbp), %rdx

vmovapd %ymm8, -176(%rbp)

Looks reasonable (not ideal)

Machine code example
SVE
ldr x2, [sp, 856]

ldr q0, [x28, x1]

ldr q2, [x2, x1]

ldr q14, [x30, x1]

ldr x2, [sp, 864]

str q2, [sp, 688]

fsub v14.2d, v14.2d, v0.2d

ldr q23, [x2, x1]

ldr q0, [x6, x1]

ldr x2, [sp, 1536]

str q0, [sp, 208]

ldr q0, [x2, x1]

ldr x2, [sp, 1664]

ldr q1, [x26, x1]

str q0, [sp, 240]

ldr q22, [x2, x1]

ldr x2, [sp, 888]

ldr q4, [x27, x1]

ldr q11, [x2, x1]

ldr x2, [sp, 896]

fsub v4.2d, v4.2d, v1.2d

large number of integer load/store???
partly because instruction rescheduling

Instruction set difference
AVX SVE

Memory operand yes no
Address offset > 20 bits 8 bits

• With AVX, the use of memory operand for arithmetic operation and
large integer offset for memory address reduces the need to change
values of address registers.

• With ARM SVE, address registers should be updated for practically all
memory accesses...

• However, even with AVX2, the efficiency is still low. I have tried a sim-
plified test.

Second test

• One variable (actually can change the number of variable to test cache
performance)

• simplified equation

Second test: the code body

do jj=1,ny

j = jj+2

do ii=1,nx

i = ii+8

u0xx = (-(u00(i-2,j,k0)+u00(i+2,j,k0)) +16*(u00(i-1,j,k0)+u00(i+1,j,k0)) -30*(u00(i,j,k0)))*c2

u0yy = (-(u00(i-2,j,k0)+u00(i+2,j,k0)) +16*(u00(i-1,j,k0)+u00(i+1,j,k0))-30*(u00(i,j,k0)))*c2

u0xy = (+(u0x(i,j-2,k0)-u0x(i,j+2,k0)) -8*(u0x(i,j-1,k0)-u0x(i,j+1,k0)))*c

u0z = (+(u00(i,j,km2)-u00(i,j,kp2)) -8*(u00(i,j,km1)-u00(i,j,km1)))*c

u0xz = (+(u0x(i,j,km2)-u0x(i,j,kp2)) -8*(u0x(i,j,km1)-u0x(i,j,kp1)))*c

u0yz = (+(u0y(i,j,km2)-u0y(i,j,kp2)) -8*(u0y(i,j,km1)-u0y(i,j,kp1)))*c

u0zz = (-(u00(i,j,km2)+u00(i,j,kp2))+16*(u00(i,j,km1)+u00(i,j,kp1))-30*(u00(i,j,k0)))*c2

u0(i,j,k) = u00(i,j,k0)+ 0.1*(u0x(i,j,k0)+ u0y(i,j,k0)+ u0z) + 0.01*(u0xx+u0yy+u0zz)

* + 0.001*(u0xy+u0xz+u0yz)

enddo

enddo

Note that ux and uy are calculated in separate loops to reduce the calculation cost.

Second test: the performance

• My note PC (Core i7-8565U) : 18Gflops

• Our Xeon at KU (Xeon Gold 6140): 10 Gflops

• FX700: 8 Gflops

• Core i7 and Xeon numbers are limited by the memory bandwidth (num-
ber of floating-point operations per grid point is small)

• FX700 number is not.

The real reason for the low efficiency

Floating-point operation wait

Floating-point L2$ wait

4-issue

• Dominant source of wait
is “Floating-point opera-
tion wait”. The large la-
tency of A64fx arithmetic
unit prevents its efficient
use.

• L2$ latency also visible...

What can/should be done next?
We might be able to control the behavior of the arithmetic unit by generat-

ing the assembly code directly from the equation, bypassing the compiler.
For example, the following statement

r_x(i,j,k) = ((r_p(i-2,j,k)-r_p(i+2,j,k))

* -8*(r_p(i-1,j,k)-r_p(i+1,j,k)))*c

can be written with two registers for constants, one accumulator, one ad-
ditional register. So eight-way unrolling is possible. 16-way (effectively 15)
might be better.

This unfortunately means we need to generate assembly code directly...

Assembly code for A64fx — My first try
.arch armv8-a+fp16+sve

.file "testasm.c"

.text

.align 2

.p2align 3,,7

.global svefadd

.type svefadd, %function

svefadd:

.LFB0:

.cfi_startproc

ptrue p7.d, all

ld1d z0.d, p7/z, [x0]

ld1d z1.d, p7/z, [x1]

fadd z0.d, z1.d, z0.d

st1d z0.d, p7, [x0]

ret

.cfi_endproc

.LFE0:

.size svefadd, .-svefadd

.ident "GCC: (GNU) 8.2.1 20180905 (Red Hat 8.2.1-3)"

.section .note.GNU-stack,"",@progbits

Assembly code for A64fx — My first try
This code actually worked, both with Fujitsu compiler and gcc.
Adding two sve variables give the expected result.

x 0.000e+00 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 6.000e+00 7.000e+00

y 1.000e-01 2.000e-01 3.000e-01 4.000e-01 5.000e-01 6.000e-01 7.000e-01 8.000e-01

x after call 1.000e-01 1.200e+00 2.300e+00 3.400e+00 4.500e+00 5.600e+00 6.700e+00 7.800e+00

Summary

• Performance of explicit regular-grid code on A64fx (and K) is usually
limited by its memory bandwidth, because they are written in the way
the most efficient on vector machines in 1980-90s.

• We can generate codes which try to make use of L1/L2 caches, and
such code works fine on x86.

• The performance of such code is still low on A64fx, because of large
latency of arithmetic pipeline and L2 cache

• By generating assembly code directly from the original equation and
finite difference formulae, we might be able to improve the performance.

