
Fast parallel sort on x86 and A64fx

Jun Makino

Internal Seminar May 25, 2022

Talk Summary

• I have discussed a bit about parallel samplesort(Sept 22,
2021) and SIMD quicksort (Mar 3 2022).

• Combination of them worked well, but parallel performance
was not ideal.

• minimized the memory access of single-core sort routine
using the idea of samplesort.

• Achieved pretty good performance on both x86 and A64fx.

• Will be tested with FDPS.

Talk plan

1. Parallel sort

2. Scalability of parallel sort

3. Theoretically better approach

4. Our implementation

5. Performance

6. Summary

Parallel sort

• In this talk, I discuss intra-node parallel sort.

• The performance of std::sort is pretty good for single-core sort, but
we need multi-core sort (for FDPS, in particular on A64fx).

• C++17 supports “Parallel STL” which you can use on GCC9 or later, and
of course on icc, but not on Fujitsu C++ compiler for A64fx.

Scalability of parallel sort

A fast vectorized sorting
implementation based on the
ARM scalable vector
extension (SVE), B. Bramas,
2022, Figure 7

Sorting FP64 numbers. 13
times faster than single-core
with 16, 32, and 48 threads.

Algorithm: Parallel
Quicksort.

Parallel Quicksort

At each stage, the array is
divided to (roughly) two
halves.

1, 2, 4, ... threads can be
used at each stage.

Speedup factor is limited by first few stages which are not well parallelized.
Even if we have 20 stages (106 elements) and infinitely many cores, speedup
will be limited to 10(= 20/(1 + 0.5 + 0.25 + ...)
Parallel merge sort suffers the same problem.

Theoretically better approach

• Parallel sample sort

• Parallel merge sort (not discussed today)

Parallel sample sort

collect small sample, sort it and determine partition points

partition divided arrays and send them to other threads

sort each array

Sample sort: Generalization
of quicksort

• partition to n parts
(n > 2)

• First stage: n = the
number of threads

• Use sampling to
determine partition
points

Parallel version: ALL steps except for the sorting of small sample array are
parallelized

Our implementation

• https://github.com/jmakino/sortlib

• Use key-index array for sort.

• Fast n-way partitioning using heap

• Sample sort also for single-core sort

Key-index sort

• What we want to sort: particles, sort key: Morton key

• Sorting particles directly would cause lots of memory copy

• Instead, first create an array of struct of key + original array index, sort
it according to key and reorder the particle array using the sorted index.

• Parallel reordering requires two loops (reorder and copy back)

Fast n-way partitioning using heap
For each element, we need to determine which of n partitions it should go
to.

Serial

0 1 2
Tree

0

1 2

Heap

...

0
1 2
3 4 5 6
7 8 9 10 11 12 13

• Naive implementation:
O(n) operations.

• Tree-based
implementation:
O(logn) operations.

• Heap-based: O(logn)
but no pointer access.

Keep tree data in 1d array. Use loop structure to access tree.

Code (not quite optimal...)
bool unfilled = false;

for(ilevel=0;ilevel <nlevel; ilevel++){

if (ipart > n-1) {

unfilled = true;

}else{

int inc = data <= tree[ipart]? 0:1;

ipart = ipart*2+1+inc;

}

}

int offset = (1<<nlevel)-1;

if (unfilled){

offset = offset -n -1;

}

return ipart - offset;

Sample sort also for single-core sort

• Our initial implementation used std::sort for single-core sort

• It turned out that parallel performance degrades for large array.

• The bandwidth of the main memory for the quicksort used in std::sort

limits the parallel speedup.

• For single-core sort part, when the array is large, first divide ot to
smaller blocks (size 16k) using samplesort algorithm, so that new blocks
fit to L2 cache (and to L1 cache after a few steps)

Performance
Size of test data struct: 160 bytes, sort key size: 64 bits (128 bits also
implemented). 1M elements
A64fx performance

threads time(s)
1(std::sort) 0.34

2 0.138
4 0.081
6 0.063
8 0.047

12 0.041
24 0.019
36 0.013
48 0.011

Xeon Gold 6140 performance (cplab0)
parallel stl samplesort

threads time(s) time(s)
1(std::sort) 0.172 0.172

2 0.180 0.102
4 0.095 0.056
9 0.039 0.031
18 0.027 0.025
36 0.023 0.020

Performance

• On A64fx, speedup is observed up to 48 threads. The sSpeedup factor
for 48 threads is around 30.

• On Xeon, even with 36 threads the sppeedup factor is around 8, but
generally faster than parallel STL.

• Single-core performance of A64fx is one half of that of Xeon.

• A rather rare example that A64fx is actually faster than Xeon for non-
trivial parallel operation.

Summary

• I have discussed a bit about parallel samplesort(Sept 22, 2021) and
SIMD quicksort (Mar 3 2022).

• Combination of them worked well, but parallel performance was not
ideal.

• minimized the memory access of single-core sort routine using the idea
of samplesort.

• Achieved pretty good performance on both x86 and A64fx.

• Will be tested with FDPS.

