「京」からポスト「京」へ

牧野淳一郎

神戸大学理学研究科惑星学専攻 理化学研究所 計算科学研究機構 エクサスケールコンピューティング開発プロジェクト コデザイン推進チーム チームリーダー

話の構成

- 「京」と戦略プログラム
- ポスト「京」
- ポスト「京」重点課題と「萌芽的課題」
- ・まとめ

話の要点(1)

- ●「京」コンピュータは2006年度に開発が始まり、2012年度から共用開始した。ピーク性能10PFを超えるスパコンである。
- ●「京」コンピュータの利用で成果を出すため、5個の「戦略分野」が設定された。これらはそれぞれアプリケーションソフトウェアの開発から実際の大規模計算によって成果を出すまでを担った。
- 宇宙分野は、戦略分野5「物質と宇宙の起源と構造」の一部として、超新星、宇宙論的構造形成、銀河形成、惑星形成、太陽等のシミュレーションを行った。
- ポスト「京」は2020年頃完成、「京」の最大100倍程度の アプリケーション性能を目指す。

話の要点(2)

- 宇宙関係は重点課題9「宇宙の基本法則と進化の解明」:超 新星から大規模構造・ダークマターハローくらいまで(公 募・採択済)
- もうひとつ「萌芽的課題」(4課題、現在審査中)の中に「太陽系外惑星(第二の地球)の誕生と太陽系内惑星環境変動の解明」
- ◆ 本セッションでは、この課題実施に向けて、プロジェクトの状況を共有しサイエンスの課題を議論したい。

「京」コンピュータ

ピーク性能 10.62PF メモリ容量 1.26PB Top 500 #1 2011/6, 11 Gordon Bell Prize 2011, 2012

- 日本として初の「国策プロジェクト」による「世界一」を 目指したスパコン
- 総開発費およそ1100億円(年間運用経費120億円)
- 2009年の仕分け「2位では駄目なんですか」とかあったが 予定通り完成

戦略プログラム

公式説明:

HPCI戦略プログラムは、社会的・学術的に大きなブレークスルーが期待できる分野(戦略分野)において、HPCIを活用した成果の創出と、研究推進・研究支援や人材育成等を進めていくための体制整備を進めていくものです。

以下の5分野:

戦略分野1 予測する生命科学・医療および創薬基盤

戦略分野2 新物質・エネルギー創成

戦略分野3 防災・減災に資する地球変動予測

戦略分野4 次世代ものづくり

戦略分野5 物質と宇宙の起源と構造

戦略プログラム分野5

「研究開発課題」

- 格子QCDによる物理点でのバリオン間相互作用の決定
- 大規模量子多体計算による核物性解明とその応用
- 超新星爆発およびブラックホール誕生過程の解明
 - 超新星、連星中性子星合体
- ダークマターの密度ゆらぎから生まれる第1世代天体形成
 - ダークマターハロー構造形成、銀河形成、BH成長、惑星形成、太陽
- (「京」、戦略分野ともに現在事後評価中)

ポスト「京」

- 2011 年度くらいから色々検討開始
- 2012-13 年度「フィージビリティスタディ」
- 2014年度プロジェクトスタート。当初は汎用部+加速部。 7月に計画変更。汎用部のみに。
- 「京」100倍の性能をアプリケーションで実現(できるものが少なくとも1つはあること)が目標
- 開発コスト1300 億円、消費電力 30-40MW。

ちなみに:ポスト「京」における課題

技術的な問題

- ムーアの法則のおわり
 - トランジスタの微細化が限界
 - コスト上昇
 - 消費電力の低下ストップ
- アーキテクチャの限界
 - 共有メモリマルチコアプロセッサは、80年代終わりの 共有メモリベクトルプロセッサと同様に設計上限界
 - 新しいアーキテクチャ(VPP500 みたいな、、、)が必要

ちなみに:ポスト「京」における課題

経済的な問題

- プロセッサ等の開発費の上昇
 - 「スパコン」だけでは成り立たない
 - 一元々日本メーカーはスパコンだけではなりたってなかった。メインフレームありき
 - 商業的に成立していない
- 日本における半導体産業の問題
 - 最先端の半導体製造産業は既に日本に存在していない
 - スパコン「自主開発」にどういう意味があるのかわからない

課題への対応

- まあその加速部には色々対応策をいれたんだけどなくなったので特になにも将来対応しなくなった
- 汎用プロセッサは富士通独自プロセッサを開発、メニーコア、ワイドSIMD アーキテクチャ。 Xeon/Xeon Phi を富士通アーキテクチャで作るみたいな。
- コア間同期とかはハードウェアサポートで速い。頑張って チューニングすれば実行効率は出せる(と期待している)

アプリケーションからみたポスト「京」

「京」に比べると

- 1チップのコア数すごく増える
- SIMD 幅もすごく増える
- 総チップ数はあんまり変わらないくらい
- メモリバンド幅は多分そこそこ
- ◆ ネットワークはあんまり速くならない

まあすごく使いやすいというわけにはいかない。Xeon Phi よりはいいかも。

使いこなして成果を出すためのアプリケーション開発<u></u>重 点課題、萌芽的課題

ポスト「京」重点課題と「萌芽的課題」

- よくわからないが文科省の方針が変わって「戦略分野」ではなく「重点課題」ということになった。
- 2014年度にあった委員会で重点課題9課題と、「萌芽的課題」4課題が選定。重点課題はこの年に公募・採択。萌芽的は3月末に公募でた。
- 牧野代表、井田・林・草野・梅村がサブ課題責任者で応募 した。

ポスト「京」で重点的に取り組むべき社会的・科学的課題(重点課題)

<重点課題(9課題)>

- ①社会的・国家的見地から高い意義がある、
- ②世界を先導する成果の創出が期待できる、
- ③ポスト「京」の戦略的活用が期待できる課題を「重点課題」として選定。

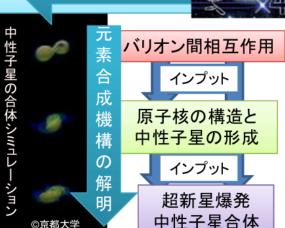
カテゴリ	重点課題	実施機関(平成28年1月末時点)
健康長 寿社会 の実現	① 生体分子システムの機能制御による革新的創薬基盤の構築 超高速分子シミュレーションを実現し、副作用因子を含む多数の生体分子について、機能阻害ばかりでなく、機能制御までをも達成することにより、有効性が高く、さらに 安全な創薬を実現する。	代表機関:理化学研究所(課題責任者:奥野 恭史·客 <u>員主管研究員)</u> 分担機関:京都大学、東京大学、横浜市立大学、名古屋大学、産業技 術総合研究所 共同研究参画企業:24社
	② 個別化・予防医療を支援する統合計算生命科学 健康・医療ビッグデータの大規模解析とそれらを用いて得られる最適なモデルによる生体シミュレーション(心臓、脳神経など)により、個々人に適した医療、健康寿命を延ばす予防をめざした医療を支援する。	代表機関:東京大学(課題責任者:宮野 悟·教授) 分担機関:京都大学、大阪大学、株式会社UT-Heart研究所、自治医 科大学、岡山大学 共同研究参画企業:5社
防災・ 環境問 題	③ 地震・津波による複合災害の統合的予測システムの構築 内閣府・自治体等の防災システムに実装しうる、大規模計算を使った地震・津波による災害・被害シミュレーションの解析手法を開発し、過去の被害経験からでは予測 困難な複合災害のための統合的予測手法を構築する。	代表機関: <u>東京大学(課題責任者:堀 宗朗·教授)</u> 分担機関:海洋研究開発機構、九州大学、神戸大学、京都大学 共同研究参画企業:1社
	④ 観測ビッグデータを活用した気象と地球環境の予測の高度化 化 観測ビッグデータを組み入れたモデル計算で、局地的豪雨や竜巻、台風等を高精度に予測し、また、人間活動による環境変化の影響を予測し監視するシステムの基盤を構築する。環境政策や防災、健康対策へ貢献する。	代表機関: <u>海洋研究開発機構(課題責任者:高橋 桂子・センター長)</u> 分担機関:理化学研究所、東京大学、東京工業大学 共同研究参画企業:7社

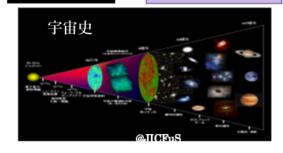
<重点課題(9課題)>(つづき)

カテゴリ	重点課題	実施機関 (平成28年1月末時点)
エネル ギー問 題	⑤ エネルギーの高効率な創出、変換・貯蔵、利用の新規基盤技術の開発 複雑な現実複合系の分子レベルでの全系シミュレーションを行い、高効率なエネルギーの創出、変換・貯蔵、利用の全過程を実験と連携して解明し、エネルギー問題解決のための新規基盤技術を開発する。	代表機関: 自然科学研究機構(課題責任者: 岡崎進·教授) 分担機関: 神戸大学、理化学研究所、東京大学、物質·材料研究機構、名古屋 大学、岡山大学、北海道大学、早稲田大学 共同研究参画企業: 17社
	⑥ 革新的クリーンエネルギーシステムの実用化 エネルギーシステムの中核をなす複雑な物理現象を第一原理解析により、 詳細に予測・解明し、超高効率・低環境負荷な革新的クリーンエネルギー システムの実用化を大幅に加速する。	代表機関:東京大学(課題責任者:吉村 忍・教授) 分担機関:豊橋技術科学大学、京都大学、九州大学、名古屋大学、立教学院立 教大学、日本原子力研究開発機構、宇宙航空研究開発機構、物質・材料研究 機構、自然科学研究機構核融合科学研究所、みずほ情報総研株式会社、株式 会社風力エネルギー研究所 共同研究参画企業:11社
産業競 争力の 強化	⑦ 次世代の産業を支える新機能デバイス・高性能材料の創成 国際競争力の高いエレクトロニクス技術や構造材料、機能化学品等の開発を、大規模超並列計算と計測・実験からのデータやビッグデータ解析との連携によって加速し、次世代の産業を支えるデバイス・材料を創成する。	代表機関: <u>東京大学(課題責任者:常行 真司·教授)</u> 分担機関:筑波大学、大阪大学、自然科学研究機構分子科学研究所、名古屋 工業大学、東北大学、産業技術総合研究所、東京理科大学 共同研究参画企業:6社
	⑧ 近未来型ものづくりを先導する革新的設計・製造プロセスの開発 製品コンセプトを初期段階で定量評価し最適化する革新的設計手法、コストを最小化する革新的製造プロセス、およびそれらの核となる超高速統合シミュレーションを研究開発し、付加価値の高いものづくりを実現する。	代表機関: <u>東京大学(課題責任者:加藤千幸·教授)</u> 分担機関:神戸大学、東北大学、山梨大学、九州大学、宇宙航空研究開発機構、 理化学研究所、東京理科大学 共同研究参画企業:30社
基礎科 学の発 展	⑨ 宇宙の基本法則と進化の解明 素粒子から宇宙までの異なるスケールにまたがる現象の超精密計算を実現し、大型実験・観測のデータと組み合わせて、多くの謎が残されている素粒子・原子核・宇宙物理学全体にわたる物質創成史を解明する。	代表機関: <u>筑波大学(課題責任者:青木 慎也・客員教授)</u> 分担機関: 高エネルギー加速器研究機構、京都大学、東京大学、理化学研究所、 大阪大学、自然科学研究機構国立天文台、千葉大学、東邦大学、広島大学 共同研究参画企業: 1社

宇宙の基本法則と進化の解明(重点課題9)

ポスト「京」で目指す成果


- 素粒子標準理論を検証し、新しい物理法則の発見に貢献する。
- 多様な元素が生まれた宇宙における重元素合成など物質創成・変換過程を統一的に理解する。
- 観測データを融合したビッグデータ宇宙論を展開し、宇宙進化において天体が階層的に形成された仕組みや、銀河中心に 巨大ブラックホールが存在する起源を解明する。


実施内容

<ポスト京で初めて可能となる以下を実現する手法·コード開発>

- SuperKEKBと連携し標準理論を超える物理を探索のため、重いbクォークの 直接計算を実現する、格子間隔(時空間解像度)を従来の0.1から0.03 fmの 高精細にした格子QCD計算
- 素粒子間に働く力の謎の解明、原子核・宇宙物理学研究の基盤を強固にする、陽子、中性子、ハイペロン間に働くバリオン間力を世界最高精度で求める格子QCD計算
- 中性子星連星の合体による<u>重元素合成の定量的な理解</u>に一般相対論、磁 気流体、輻射流体などあらゆる効果を取り入れた高解像度かつ長時間にわ たるシミュレーション
- 広域サーベイ観測データ解析に必要な統計量を得るための構造形成シミュレーションライブラリ
- 宇宙論パラメータ測定の一つである残存ニュートリノ質量決定のため、256⁶ 個の格子数で宇宙論的ボルツマンシミュレーション
- 巨大ブラックホールの形成および進化過程解明のため、高解像度相対論的 輻射磁気流体シミュレーション

標準模型 ⊗ QCD補正 = 実験値 or 新物理

ポスト「京」で重点的に取り組むべき社会的・科学的課題(萌芽的課題)

<萌芽的課題(4課題)>

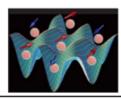
ポスト「京」で新たに取り組むチャレンジングな課題として、今後、公募予定。

萌芽的課題

⑩ 基礎科学のフロンティア - 極限への挑戦

極限を探究する基礎科学のフロンティアで、実験・観測や「京」を用いた個別計算科学の成果にもかかわらず答の出ていない難問に、ポスト「京」のみがなし得る新しい科学の共創と学際連携で挑み、解決を目指す。

くサブ課題(例)>


A: 破壊とカタストロフィ: 材料、人工物から地球まで

B: 相転移と流体が織り成す大変動:ナノバブルから火山噴火まで

C: 極限環境での状態変化:物質の理解から惑星深部へ

D: 量子力学の基礎と情報:計算限界への挑戦

① 複数の社会経済現象の相互作用のモデル構築とその応用研究

複雑且つ急速に変化する現代社会で生じる様々な問題に政策・施策が俊敏に対応するために、交通や経済など社会活動の個々の要素が互いに影響し合う効果を取り入れて把握・分析・予測するシステムを研究開発する。

くサブ課題(例)>

A: 各社会要素モデルの統合化とその有効性実証研究

B: 各社会構成要素モデルの高度化(交通システムの高精度高信頼予測の実現、およびそれによる最適化の実現)

② 太陽系外惑星(第二の地球)の誕生と太陽系内惑星環境変動の解明

宇宙、地球・惑星、気象、分子科学分野の計算科学と宇宙観測・実験が連携する学際的な取り組みにより、観測・実験と直接比較可能な大規模計算を実現し、地球型惑星の起源、太陽系環境、星間分子科学を探究する。

くサブ課題(例)>

A: 地球と地球型惑星(第二の地球)の誕生条件の解明

B: 太陽活動による地球環境変動の解明

C: 太陽系における物質進化の解明

① 思考を実現する神経 回路機構の解明と人工 知能への応用

革新技術による脳科学の大量のデータを融合した大規模多階層モデルを構築し、ポスト「京」での大規模シミュレーション により思考を実現する脳の大規模神経回路を再現し、人工知能への応用をはかる。

<サブ課題(例)>

A: 思考を実現する神経回路機構の解明

B: 脳アーキテクチャにもとづく人工汎用知能

ポスト「京」重点課題と「萌芽的課題」

- よくわからないが文科省の方針が変わって「戦略分野」ではなく「重点課題」ということになった。
- 2014年度にあった委員会で重点課題9課題と、「萌芽的課題」4課題が選定。重点課題はこの年に公募・採択。萌芽的は3月末に公募でた。現在審査中。
- 重点課題の中に「宇宙の基本法則と進化の解明」。但し、 これは超新星、宇宙論ははいるが銀河形成・星形成・惑星 形成とかは入らない
- 萌芽的課題「太陽系外惑星(第二の地球)の誕生と太陽系内惑星環境変動の解明」で惑星科学・重点課題にはいってない宇宙科学を推進する

まとめ

- ポスト「京」は 2020 年頃完成、「京」の最大 100 倍程度の アプリケーション性能を目指す。
- 宇宙関係は重点課題9「宇宙の基本法則と進化の解明」:超 新星から大規模構造・ダークマターハローくらいまで(公 募・採択済)
- もうひとつ「萌芽的課題」(4課題、現在応募したとこ)の中に「太陽系外惑星(第二の地球)の誕生と太陽系内惑星環境変動の解明」
- ◆ 本セッションでは、この課題実施に向けて、プロジェクトの状況を共有しサイエンスの課題を議論したい。

まとめ

- ポスト「京」は2020年頃完成、「京」の最大100倍程度のアプリケーション性能を目指す。
- 宇宙関係は重点課題9「宇宙の基本法則と進化の解明」:超 新星から大規模構造・ダークマターハローくらいまで(公 募・採択済)
- もうひとつ「萌芽的課題」(4課題、現在応募したとこ)の中に「太陽系外惑星(第二の地球)の誕生と太陽系内惑星環境変動の解明」
- ◆ 本セッションでは、この課題実施に向けて、プロジェクトの状況を共有しサイエンスの課題を議論したい。
- いやまあ採択されればですが。