
Next generation GRAPE: GRAPE-DR

Jun Makino

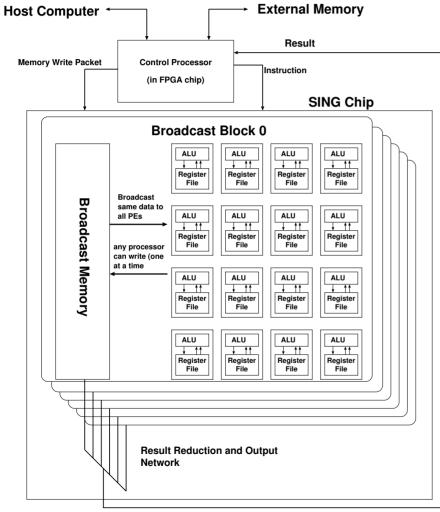
Center for Computational Astrophysics National Astronomical Observatory of Japan

Intel P4 and GRAPE-6

Intel Prescott (2004)GRAPE-6 chip (2000)2 FP ops/clock ~ 400 FP ops/clock90nm, 7.6 GF, > 100W? $0.25 \mu m, 31$ GF, 10WA GRAPE processor is ~ 100 times more efficient.Next generation will be similarly good.

Problem with GRAPE approach

• Chip development cost becomes too high.

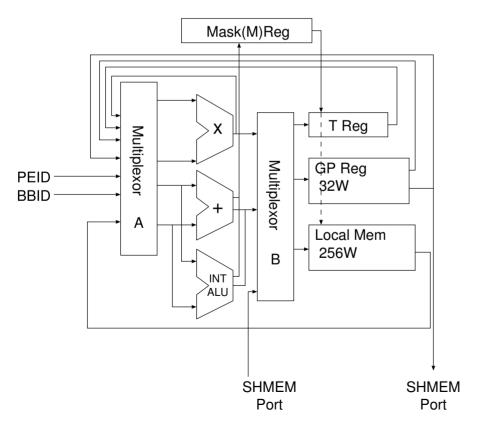

Year	Machine	Chip Initial Cost
1992	GRAPE-4	200K\$
1997	GRAPE-6	1M\$
2004	GRAPE-DR	4M\$

Initial cost should be 1/4 or less of the total budget. How we can continue?

Next-Generation GRAPE — GRAPE-DR

- Planned peak speed: 2 Pflops
- New architecture wider application range than previous GRAPEs
- primarily to get funded
- Planned completion year: FY 2008 (early 2009)

GRAPE-DR processor structure


Result output port

Collection of small processor, each with ALU, register file (local memory)

One chip will integrate 512 processors Single processor will run at 500MHz clock (2 operations/cycle).

Peak speed of one chip: 0.5 Tflops (20 times faster than GRAPE-6).

PE architecture

- Float Mult (24 bit mantissa, with full 49 bit output)
- Float add/sub (60 bit mantissa)
- Integer ALU (72 bit)
- 32-word (72 bit) general-purpose register file
- 256-word (72 bit) memory
- ports to shared memory (shared by 32 processors)

How do you use it?

- GRAPE: We'll write the necessary software. Move from GRAPE-6 will be less painful than move from GRAPE-4 to GRAPE-6.
- Matrix etc ... RIKEN/NAOJ will do something
- New applications:
 - Primitive Compiler available
 - For high performance, you need to write the kernel code in assembly language

Primitive compiler

(Nakasato 2006)

```
/VARI xi, yi, zi, e2;
/VARJ xj, yj, zj, mj;
/VARF fx, fy, fz;
dx = xi - xj;
dy = yi - yj;
dz = zi - zj;
r2 = dx * dx + dy * dy + dz * dz + e2;
r3i= powm32(r2);
ff = mj*r3i;
fx += ff*dx;
fy += ff*dy;
fz += ff*dz:
```

Development status

1st prototype board. (Designed by Toshi Fukushige) Confirmed succesful operation at 500MHz clock Currently working on softwares and FPGA design to run real applications

Summary

- GRAPE-DR, with programmable processors, will have wider application range than traditional GRAPE
- Assembly language defined.
- Primitive compiler is ready.
- Processor chip is completed and no problem found (so far).