スーパーコンピューター「富岳」と宇宙物理・惑星科学

牧野淳一郎 神戸大学 理学研究科 惑星学専攻/CPS

概要

- 本企画セッションの概要
- 富岳の現況と今後
- 富岳成果創出加速プログラムの概要
- 富岳とその次

企画セッション Z3「富岳時代のシミュレーション天文学」

開催趣旨:

宇宙科学・惑星科学の研究に、計算機シミュレーションは大きな役割を果たしてき ました。(ちょっと省略) この発展を可能にしてきたのはムーアの法則に従ったスー パーコンピューターの能力の発展です。しかしながら、ムーアの法則の限界が近付 き、スーパーコンピューターの性能の進歩はゆるやかになり、またその性能を引き 出すのはより困難になってきています。本企画セッションでは、今年完成して世界 一の性能を実現したスーパーコンピューター「富岳」で実現された計算能力の向上 を、いかにして宇宙科学・惑星科学の量的・質的な発展につなげるかをテーマとし、 宇宙科学・惑星科学の理論・シミュレーション研究、観測、および数値計算手法に ついての発表を募ります。それにより、シミュレーションによる宇宙科学・惑星科 学研究の将来計画についての総合的な議論を行うことを目的とします。

基調講演者(発表順)

牧野淳一郎(神戸大学) Z301r 3/16 9:30- (本講演) スーパーコンピューター「富岳」と宇宙物理・惑星科学

河田大介(University College London) Z306r 3/16 10:42 Gaia/JASMINE 時代の銀河系考古学のための数値シミュレーション

堀田英之(千葉大学) Z323r 3/17 9:30-富岳で実現する太陽の超大規模数値シミュレーション

倉本 圭(北海道大学) Z326r 3/17 10:18-火星衛星探査計画 MMX とシミュレーション天文学

セッション全体

- 宇宙論: 大木、田中、吉川、高橋
- 銀河形成: 河田、斎藤、平居
- 星団形成・進化: 藤井、Wang
- 星形成: 富田、岩崎
- 惑星形成: 石城、柴田、石原
- 高エネルギー天文: 朝比奈、岩上、原田、赤穂、大村、松本、井上
- 太陽: 堀田、金子、庄田
- 惑星探査: 倉本
- 固体地球: 亀山
- 惑星表層大気: 樫村、竹広

セッションの目標

富岳「時代」のシミュレーション天文学

= 必ずしも富岳を使ったものというわけではないが、今後のシミュレーション天文学の発展の方向を概観したい

富岳の利用:

- 富岳成果創出加速プログラム「宇宙の構造形成と進化から惑星表層環境変動までの統一的描像の構築」(代表:牧野、「計算宇宙惑星」)
- 一般課題・若手課題等

計算資源としてはかなり大きい。計算宇宙惑星の配分だけでもアテル イと同じオーダー。

とはいえ色々考えないといけないこともある。 というわけで、富岳はどんなものか、を次に。

富岳(ポスト「京」)

- ハードウェアは完成、今月から「共用開始」
- 2020/6 Top500 1位 415.53PF、HPCG、Graph500、HPL-AI 1位
- ちなみに 2020/6 Green500 1 位は PFN の MN-3。プロセッサの MN-Core は牧野のとことの共同開発。(11 月は NVIDIA に 1 位奪 回された、、、)

理化学研究所 計算科学研究センター RIKEN Center for Computational Science Post-K Information

Specifications Top

Performance

Applications

Tips

Misc

Perf. Eval.

> Top > Performance

■ Performance Targets

- √ 100 times faster than K for some applications (tuning included)
- ✓ 30 to 40 MW power consumption

■ Peak Performance

	PostK	K	
Peak DP (double precision)	400+ Pflops (34x +)	11.3 Pflops*	
Peak SP (single precision)	800+ Pflops (70x +)	11.3 Pflops	
Peak HP (half precision)	1600+ Pflops (141x +)		
Total memory bandwidth	150+ PB/sec (29x +)	5,184TB/sec	

^{*} Reported in TOP500 (including I/O nodes)

■ Geometric Mean of Performance Speedup of the 9 Target Applications over the K-Computer

37x +

☐ Predicted Performance of 9 Target Applications As of 2019/05/14

	A3 0, 2013, 03, 14					
Area	Priority Issue	Performance Speedup over K	Application	Brief description		
Health and longevity	Innovative computing infrastructure for drug discovery	125x +	GENESIS	MD for proteins		
h and evity	Personalized and preventive medicine using big data	8x +	Genomon	Genome processing (Genome alignment)		
Dis. preven Enviro	Integrated simulation systems induced by earthquake and tsunami	45x +	GAMERA	Earthquake simulator (FEM in unstructured & structured grid)		
Disaster prevention and Environment	Meteorological and global environmental prediction using big data	120x +	NICAM+ LETKF	Weather prediction system using Big data (structured grid stencil & ensemble Kalman filter)		
Energy issue	5. New technologies for energy creation, conversion / storage, and use	40x +	NTChem	Molecular electronic simulation (structure calculation)		
y issue	6. Accelerated development of innovative clean energy systems	35x +	Adventure	Computational Mechanics System for Large Scale Analysis and Design (unstructured grid)		
Industrial competitiveness enhancement	7. Creation of new functional devices and high-performance materials	30x +	RSDFT	Ab-initio simulation (density functional theory)		
trial veness ement	8. Development of innovative design and production processes	25x +	FFB	Large Eddy Simulation (unstructured grid)		
Basic science	Elucidation of the fundamental laws and evolution of the universe	25x +	LQCD	Lattice QCD simulation (structured grid Monte Carlo)		

日本のスパコン開発の過去から現在

システム	完成年	ピーク性能	消費電力	性能向上	電力性能向上
数值風洞	1993	280 GF	1MW	_	_
地球シミュレータ	2002	40TF	6MW	143	24
「京」	2011	11PF	15MW	275	110
「富岳」	2020	500PF	\sim 35MW	45	19

計算機 (の技術) の使い方を常に見直して、自分の問題に適した構造の機械を使う (作る) ようにし、かつその上で解き易いように問題を立て直すことがないと、「10年で100倍」を生かした人に比べ10倍分は立ち遅れることになります。

近田義広「計算機を使う、計算機の技術を使う」(1988)

アプリケーションからみた富岳

「京」(が使いやすかったかどうかはともかく)に比べると

- 1 チップのコア数6倍
- SIMD 幅 4 倍。チップ単体性能は 24 倍。メモリは 2 倍
- 総チップ数は2倍
- メモリバンド幅は比率としては若干低下
- ◆ ネットワークはほぼ同じ(ちょっと速い+3方向同時が4方向同時に)

使いこなして成果を出すためのプログラム=富岳成果創出加速プログラム (2021 年度から3年間)

「富岳」成果創出加速プログラム

- 2020年度から2022年度までの3年間
- 4 領域 19 課題 (+追加募集?)
- 4領域
 - 1. 人類の普遍的課題への挑戦と未来開拓
 - 2. 国民の生命・財産を守る取組の強化
 - 3. 産業競争力の強化
 - 4. 研究基盤

1 人類の普遍的課題への挑戦と未来開拓

- 量子物質の創発と機能のための基礎科学 一「富岳」と最先端実験の密連携による革新的強相関電子科学
- 全原子・粗視化分子動力学による細胞内分子動態の解明
- ◆ シミュレーションで探る基礎科学:素粒子の基本法則から元素の 牛成まで
- 宇宙の構造形成と進化から惑星表層環境変動までの統一的描像の 構築(計算宇宙惑星)
- ◆ 大規模データ解析と人工知能技術によるがんの起源と多様性の解明
- 脳結合データ解析と機能構造推定に基づくヒトスケール全脳シミュレーション※
- 核燃焼プラズマ閉じ込め物理の開拓

2国民の生命・財産を守る取組の強化

- プレシジョンメディスンを加速する創薬ビッグデータ統合システムの推進
- 防災・減災に資する新時代の大アンサンブル気象・大気環境予測
- マルチスケール心臓シミュレータと大規模臨床データの革新的統合による心不全パンデミックの克服
- ◆ 大規模数値シミュレーションによる地震発生から地震動・地盤増幅評価までの統合的予測システムの構築とその社会実装

3 産業競争力の強化

- 省エネルギー次世代半導体デバイス開発のための量子論マルチシ ミュレーション
- 「富岳」を利用した革新的流体性能予測技術の研究開発
- 航空機フライト試験を代替する近未来型設計技術の先導的実証研究
- 次世代二次電池・燃料電池開発による ET 革命に向けた計算・データ材料科学研究
- 環境適合型機能性化学品
- 大規模計算とデータ駆動手法による高性能永久磁石の開発
- スーパーシミュレーションと AI を連携活用した実機クリーンエネルギーシステムのデジタルツインの構築と活用

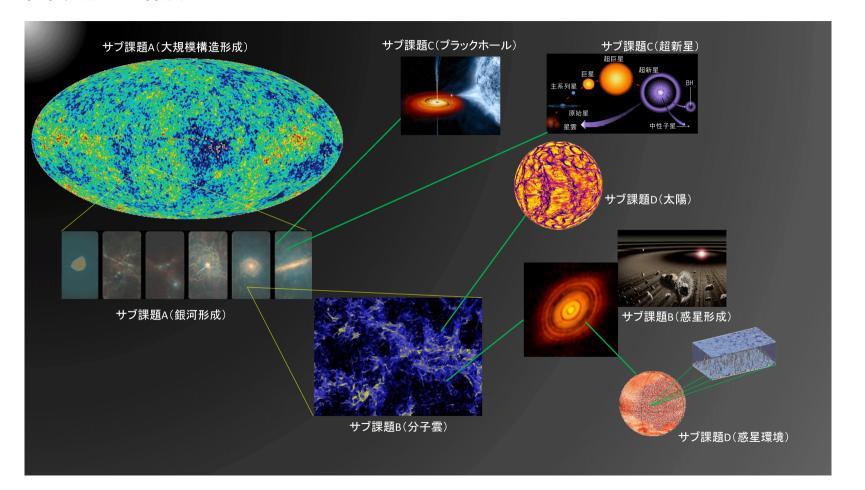
4 研究基盤

● 全脳血液循環シミュレーションデータ 科学に基づく個別化医療支援技術の開発

歴史的経緯

- 「京」の時: (準備期間除いて) 2011-2015 の5年間の「戦略プログラム」
 - 分野5物質と宇宙の起源と構造
- 2015-2019 重点課題 9 分野、 2016-2019 萌芽的課題 4 分野
 - 宇宙の基本法則と進化の解明
 - 本陽系外惑星(第二の地球)の誕生と太陽系内惑星環境変動の 解明

(個人的には、あんまり分野・期間を細かくわけないほうが成果につながると思うわけですが)


重点 → 富岳加速で年間総予算およそ 1/3 に (1/3 減じゃない)

計算宇宙惑星課題の目標

宇宙の始まりであるビッグバンから、膨張宇宙における重力不安定による構造 形成、それに伴って起こる銀河形成、銀河の中での星形成、星形成に伴う惑星 形成、形成後の惑星の進化、惑星表層環境の形成、さらには太陽活動とその太 陽圏、地球への影響といった、宇宙における階層的な構造の形成と進化につい ての全体的・統一的な理解を、複数の階層にまたがって「富岳」を駆使した世界 最高規模のシミュレーションと最新の観測成果を組み合わせることで構築する。

割と文字通り、「宇宙の統一的理解」

課題の構造

目標としては、、、

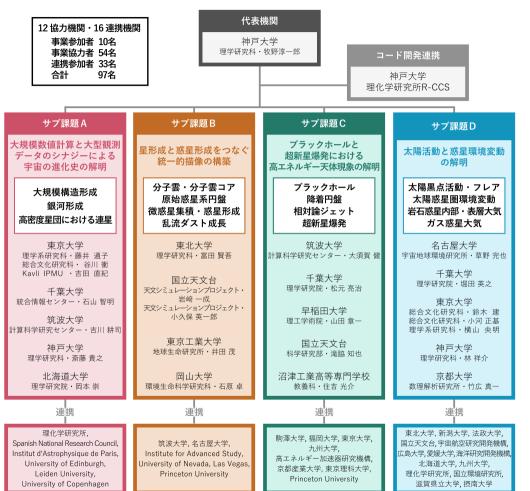
宇宙の大規模構造

銀河形成、超巨大ブラックホール形成・成長

分子雲·星団形成·進化

星形成・進化、超新星、恒星質量ブラックホール

惑星形成


惑星進化

あんまり変な仮定や近似いれないで、関係する階層との相互作用もちゃんといれて、観測と連携して天体形成進化を理解するように「なりたい」

課題内の構成

- サブ課題A「大規模数値計算と大型観測データのシナジーによる宇宙の進化史の解明」— 大規模構造、銀河、星団
- サブ課題 B「星形成と惑星形成をつなぐ統一的描像の構築」—星形成から惑星 形成、
- サブ課題 C「ブラックホールと超新星爆発における高エネルギー天体現象の解明」— ブラックホールとその周りの降着円盤や超新星爆発等の高エネルギー現象
- サブ課題 D「太陽活動と惑星環境変動の解明」— 惑星の内部および表層環境の 動態・太陽恒星活動とその惑星環境への影響

宇宙の構造形成と進化から惑星表層環境変動までの統一的描像の構築

そうはいっても

あんまり変な仮定や近似いれないで、関係する階層との相互作用もちゃんといれて 観測と連携して天体形成進化を理解する なんてことは本当にできるのか?

大規模構造

- はいってくる物理は重力だけ。構造自体にはバリオン物理、銀河形成はほぼ影響しない。
- ダークマターは何か? は問題。ニュートリノもあるか? とか
- ダークマターだけならそこそこの「精度」で計算可能。
- 観測との比較は「精密科学」になってきている(銀河形成モデルはまだはいる)

銀河形成

- 大規模構造 (宇宙論的初期条件) は割と決まった。
- 観測: GAIA で我々の銀河系個別の星レベルの位置・運動がみえる
- その理解には星団での星形成、星団の「熱力学的」進化がはいった銀河形成・ 進化シミュレーションが必要
- 質量分解能を太陽質量くらいにして個別の星を表現: 富岳でその辺までいきたい。
- 星形成自体はまだモデル必要。

星団形成 · 進化

- ullet 星団の「熱力学的」進化は手が届きそう (ハミルトニアン分割による $O(N \log N)$ コードの開発)
- 星団形成: まだ単純な初期条件から。必要な物理が全部はいった計算かどうかがまだ問題? 将来的に銀河形成との関係を

ブラックホール・超新星

牧野がいうと嘘いいそうですが、、、

- ブラックホール、降着円盤の 一般相対論的3次元輻射磁気流体計算
- 超新星爆発の3次元輻射磁気流体計算

銀河形成・星形成へのフィードバック。観測との関係。

星·惑星形成

- 星形成: 牧野がいうと嘘いいそうなので今日はパス
- ullet 惑星形成: 色々難しいが、大規模シミュレーションは段々可能になってきた (ハミルトニアン分割による $O(N \log N)$ コードの開発)

太陽活動

物理はある意味「単純」といっていい?

- 対流層、磁場: 大規模シミュレーションでかなり「再現」
- その上。フレア、太陽圏: 連結階層シミュレーションがちゃんと できる世界

惑星環境変動

- 惑星表層: 地球の気候モデルから惑星気候へ。
- 固体地球進化。マントル対流とプレートテクトニクス。プレート を扱う手法ができてきた。

富岳とその次

電力性能でみると、数値風洞→地球シミュレータ→「京」→富岳で 24, 110, 19 倍。富岳で上がってないのは「計算機 (の技術) の使い方を常に見直」せてないせい?

話はそんなに簡単ではない。同じ 2011 年から 2020 年度までの x86 server (Green500) Nehalem Xeon $0.4GF/W \rightarrow Skylake$ (5Gflops/W)の 12 倍。元が 2 倍でさらにあがりかたも 1.5 倍なので Xeon の 3 倍よい。

少なくとも電力性能に関する限り、GPGPU に比べてもファクターでは劣らない。

では、諸手を挙げて歓迎できる素晴らしいマシンか?

Skylake との比較

	Skylake	富岳
OoO window	224	128
FP register	168	128
FMA latency	4	9
Load (From L1D) latency	4-6	11
L2D Hit latency	14	37-47

レイテンシ 2-3 倍、アウトオブオーダー資源半分強。あと L1D, L2D のバンド幅も 半分くらい。

低消費電力化には大きく貢献 アプリケーション性能をだすのは容易ではない 極めて「日本的」。「汎用マルチコア」という与えられた枠の中で頑張った設計。

富岳の次

- 次は「計算機 (の技術) の使い方を常に見直」すことが必須。
- 「京」、「富岳」の2回それをしなかった。
- 国家プロジェクトだと次もしない気がする。

まとめ

- 富岳はできた。計算資源はかなりある。有効に使っていく必要あり。
- 計算宇宙惑星では、割と本当に「宇宙の統一的理解」を目標にする。
- 「統一的理解」の意味は
 - あんまり変な仮定や近似いれないで
 - 関係する階層との相互作用もちゃんといれて
 - 観測と連携して天体形成進化を理解する こと。
- 実際の中身はこれからの講演で。皆様御期待を。