
Accelerator for Deep learning and HPC

Jun Makino
Kobe University/Preferred Networks

SimonFest May 21 2025



Simon with GRAPE-6 (2002?) J.M. with GRAPE-4 (1995)



Talk Structure
• GRAPE

• The life after GRAPE

• MN-Core

• What will come after GPUs?

• How we do simulations on post-GPU processors?

• Summary



Brief history of GRAPE(-DR)
• Basic concept

• GRAPE-1 through 6

• GRAPE-DR



Basic concept (As of 1988)
• With astrophysical N -body simulation, almost all calculation goes to

the calculation of particle-particle interaction.

• This is true even for fast O(N logN) or O(N) schemes

• A pipelined hardware which calculates the particle-particle interaction
can accelerate overall calculation.

• Original Idea: Chikada (1988)

Host
Computer

GRAPE

Time integration etc. Interaction calculation



GRAPE-1 to GRAPE-6

GRAPE-1: 1989, 308Mflops

GRAPE-4: 1995, 1.08Tflops

GRAPE-6: 2002, 64Tflops



Performance history (as of 200x)
Since 1995 (GRAPE-4),
GRAPE has been
faster than
general-purpose
computers.

Development cost was
around 1/100.
Performance per Watt
was around 100.



Why no GRAPE-8?

Simon’s way to refer
to GRAPE-8
(Great Ape)



GRAPE-DR: Why and what?

• Chip development cost becomes too high.

Year Machine Chip initial cost process
1992 GRAPE-4 200K$ 1µm
1997 GRAPE-6 1M$ 250nm
2004 GRAPE-DR 4M$ 90nm
2018 MN-Core > 10 M$ N12
2022 MN-Core 2 ∼ 20 M$ N7
2024 MN-Core 3 ∼ 40 M?$ 2nm

How we can continue?
Widen application area/user base



Processor architecture

GP Reg

 32W

Local Mem

 256W

T Reg

+

x

M
u

ltip
le

x
e

r

M
u

ltip
le

x
e

r

INT

ALU

SHMEM

Port

SHMEM

Port

A

B

Mask(M)Reg

PEID

BBID

• Float Mult

• Float add/sub

• Integer ALU

• 32-word registers

• 256-word memory

• communication port

• 512 of them in one chip

(Rather recently I realized this architecture is very similar to that of FPS
AP-120B, which Steve has used for his hybrid N-body+Fokker-Planck code)



Limitation of GRAPE-DR
Not fast enough compared to commercially available chips

Year Our system speed What you could buy speed
1995 GRAPE-4 640MF DEC Alpha 150MF
2001 GRAPE-6 30GF Intel P4 1.4GF
2008 GRAPE-DR 250GF NVIDIA C2050 515GF

System cost per chip was very low for GRAPE-4 and 6, but not
so low for GRAPE-DR.
For the same process technology, GRAPE-DR would have been
better than GPU, but this was not quite enough.



In the meantime...
BRIDGE (Fujii+2006): Let two systems interact with fixed time
intervals.

P3T scheme (Oshino+2011): Parcile-Particle, Particle-Tree
— We finally combined individual timestep, Barnes-Hut tree,
and large scale parallization (cf. McMillan and Aarseth 1993)

FDPS: Framework for Developping Particle Simulators (Iwasawa+2016)
https://github.com/FDPS/FDPS
— Make it possible to write paralell treecode for any particle-
particle interaction

Resulted in: GPLUM (Ishigaki+2020) for planet formation, PeTar
(Wang+2020) for star clusters, ASURA/FDPS (202X...) for galax-
ies.



AI-oriented processors
• One layer of NN is matrix-vector product (with O(n) other

operations)

• In the case of CNN, matrix-matrix product.

• Very low precision numbers are used. FP16, FP8 and in
some cases FP4.

• With Transformers (the core of GPT-x), matrix-matrix multi-
plication (but matrix width limited by the batch size) is the
main operation.

• Special-purpose architectures (with matrix-vector calcula-
tion pipeline) might be possible.



AI-oriented processors
• HotChips 24: 14 out of 24 oral presentations are on AI processors.

• Tenstorrent Blackhole, SK Hynix PiM, Blackwell, Sambanova SN40L,
Intel Gaudi 3, AMD MI300X, FuriosaAI RNGD, AMD(Xilinx) Versal, Onyx
(Stanford), Meta MTIA, Tesla Dojo, Cerebras CS-2, MS MAIA, PFN MN-
Core 2

• Blackhole, SN40L, Onyx, MTIA, Dojo, Cerebras, MAIA: 2D on-chip net-
work + MIMD cores with matrix multiplication units.

• Gaudi, RNGD: proprietary arch with very large matrix multiplication
units.

• SK Hynix : custom GDDRx memory with FPUs.

• Versal : FPGA, remaining: Nvidia, AMD, PFN



Characteristics of architectures

• No hierarchical cache (except for GPUs from NVIDIA and AMD)

• Almost all AI-oriented processors have largely similar architectures.
MIMD, 2D-mesh network with HBMs at the edge of the network.

• Writing application programs for these processors is ... not easy (Note
that we only need matmul for AI).

• No FP64 support. Most processors lack FP32. Even with GPUs from
NVIDIA and AMD, relative FP64 performance started to decrease.



MN-Core
• AI-oriented processor developped by Preferred Networks

(PFN) and JM.

• (JM moved to the cross-appointment position between Kobe
U and PFN as of Nov 2023)

• At the time of completion, achieved highest FP16 perfor-
mance per board and highest performance per watt num-
ber.

• Development started in 2016. First gen completed in 2020.

• FP16 Peak 524TF

• Power consumption less than 500W, 1.2TF/W

• 2.5x higher performance per watt compared to NVIDIA V100

(Still not quite good enough... I want to have 10x or more)



Why first-gen MN-Core was not good
enough

• At the time of the design, it would be more than 10x better
than NVIDIA P100 or its successor with a similar architec-
ture.

• NVIDIA V100 adopted matrix-matrix multiplication unit (=
NVIDIA also adopted a specialized architecture)

• MN-Core advantage was reduced by a factor of four...



MN-Core overview
• 1 card : 1 module

• 1module : 4-die MCM

• 1 die: PCIe (gen4, x16), LPDDR4 memory, 4 “Level-2 broad-
cast blocks” (L2Bs)

• 1 L2B: 8 L1Bs

• 1 L1B: 16 MABs (Matrix Arithmetic Blocks)

• 1 MAB: 4 Processor Elements and one Matrix arithmetic
unit

• FP64:FP32:FP16 performance ratio is 1:4:16

• Entire module operates as one huge SIMD processor with
single instruction stream.



MN-Core Structure



MN-Core



Details

• PE(Processing element)

• L1B(Level 1 broadcast block)

• L2B(Level 2 broadcast block)



PE(Processing element)

IALU

GRF0

LM0

LM1

T-REG

M-REG

To MAU

To L1B

GRF1

From MAU

From L1B

• IALU and MAU as arithmetic units

• MAU performs FP64, FP32 and FP16
matrix-vector product

• GRF are 1R1W 2-port memories。LMx are single-port

• T-reg: additional register, 1R1W 4 words (vector length)

• LMx (local memory): 2048 64bit-words x 2, GRF: 512 words

• all instructions are length 4 vector instructions.



L1B(Level 1 broadcast block)
MAB0

MAB1

MAB15

L
1
B
M

• 16 MABs are connected to one
L1BM(level 1 broadcast memory)

• Data read from L1BM are broad-
casted to all PE (or MAB).

• Data read parallel from all PEs/MABs can be summed up and stored to
L1BM with full speed.

• No direct connection between PEs.



L1B characteristics

• Using explicit broadcast/reduction, fine-grained parallel operations can
be performed with very low overhead.

• In particular, reduction operations over multiple PEs. which are very
slow on GPUs, can be done very quickly.

• As a result, large number of PEs can be used to parallelize relatively
small matrix product. This feature is actually very important for infer-
ence performance of both CNN and LLM.

• L2B and top-level structures are largely the same as that of L1B.



Difference from usual architecture
• With typical present CPUs, from the machine code one need to restore

the parallelism in the innermost loop by means of register renaming
and OoO execution. This is because the number of architecture regis-
ters is too small to fill the pipeline.

• With MN-Core architecture, very large number of registers are all visible
and there is no need for register renaming.

• By using fixed-length vector instruction, we removed the need of out-
of-order execution as well. There is no need of real-time instruction
scheduling since the result of one instruction is available to the next
instruction.

• Large number of visible registers need long instruction words, which
is okay because of chip-wide SIMD architecture.



MN-Core/MN-3 system



MN-Core 2 and next generations
• MN-Core2 was completed in 2023. Now commercially avail-

able.

• Performance comparable to MN-Core with 1/5 of die area.

• Development of next generations already started.

– Samsung 2nm, should achieve highest performance for
training.

– Also started the development of new processor for LLM
inference.



Software for MN-Core 2
• MNSDK: AI-oriented

– PyTorch — ONNX — actual machine code.
– Existing PyTorch code (should) work with small changes.

• HPCSDK: For General-purpose HPC

– Dialects of OpneCL and OpenACC
– OpenACC direct resembles HPF.



Application performance of MN-Core 2
MN-Core 2 A100

GCN(PFN internal use) 5.41TF(FP32) 3.17TF
ResNet50 training 77TF(FP16) 33.2TF(BF16)
ResNet50 Inference 154TF(FP16) 33.7TF(BF16)
HIMENO benchmark 9.03TF(FP32) 0.634TF
OpenFDTD 0.655TF(FP32) 0.488TF

• Performance 1.5-5 times higher than that of A100

• Very high performance for finite-difference applications. (OpenFDTD
implementation used the temporal blocking and HIMENO benchmark
fits to the on-chip SRAM).



Looking back the evolution of computer
architecture

• Until 1976: Scalar computers. The last one: CDC 7600

• 1976 to 1992: Shared memory parallel vector processors.
Cray-1 to C-90.

• 1993 to 2008: Distributed-memory parallel microprocessors.
Cray T3D to Cray XT4.

• Since 2008: CPU + GPU (or some other accelerator). IBM
Roadrunner

Roughly in every 15 years big change architecture occurred.
The successor of GPU has not appeared yet.



Why the change was necessary?
Basic reason: Existing architecture became unable to make use of the ad-
vance in the semiconductor technology

• advance in the semiconductor technology = increase in the number of
transistors

• The architecture itself limits the scalability



Scalar to vector

• Scalar computer: use the increased number of transistors to make a
faster arithmetic unit.

• Magnetic core memory: much slower than transistors

• CDC 7600 reached the limit: fully pipelined arithmetic unit

Scalar machines could not make use of

• Gate count much larger than that for fully pipelined arithmetic unit

• Very fast SRAM main memory

Vector machines could use fast SRAM(and later DRAM) memory and a small
number of pipelines



Vector to MPP

• Advance of vector processors: increase in pipeline per processor and
number of processors which share the physical memory.

• The number of wires and switches increase faster than the number of
pipelines. 64 pipelines seem to be the practical limit.

• Need to move to a system made of large number of simple processors,
each with small memory, connected with relatively thin network.

• Early examples: Caltech Hypercube, Cray T3D etc



MPP to GPU

• It becomes possible to fit a large number of processors (pipelines) in
one chip.

• The same situation as that of vector-parallel processors.

• Many-core processors have hierarchical cache with coherency.

• hardware and power consumption to maintain coherency becomes dom-
inant.

• GPU relaxes/removes coherency and thus push up the limit a bit.



GPU to ???

• Even without coherency, the data movement between off-chip DRAM
and multiple levels of cache memory becomes the bottleneck.

• The “obvious” solution is to give up the cache hierarchy completely
and make the main memory physically close to processors.

• In other words, we need to move to an on-chip distributed-memory pro-
cessor.



Some exercise

• A wire of length 10cm (105µm) has 20pF capacitance. For 1V swing, it
consumes 10pJ/bit.

• Actual power consumption of a DDR5 is around 20pJ/bit. Voltage is
around 1.3V.

• LPDDR5 and GDDR6x: ∼ 10 pJ/bit. Wire length is shorter than that of
DDR5 modules. and swing voltage is smaller.

• HBMx: 3-4 pJ/bit. Wire length is around 25mm.

Modern GPUs spend > 50% of total power to move data from HBM to L2D$.



NVIDIA’s roadmap
Year Model Memory Power Efficiency

Bandwidth (TB/s) Consumption(W) (pJ/bit)
2020 A100 1.5 400W 33
2022 H100 3 700 29
2025 B300 8 1400? 22
2026 Rubin 13 1600? 15.4
2027 Rubin Ultra 32 3600? 14.1

• 20x memory bandwidth in 5 years

• 10x power consumption...

• Improvement of energy efficiency of memory access is rather small.

• Essentially the limit of HBM memory



What we need

• We need a processor architecture (or memory structure) which is less
expensive and more power-efficient than that of HBMx.

• Here we discuss memory architecture



Memory architecture

DDR(2000～) GDDR(2003～) LPDDR(2008～) HBM(2015～)

• DRAM cell structure is essentially the same

• difference: Core/Interface voltage, physical layout

• What consumes power is not the DRAM memory cell, but drivers and
wires (PCB/on chip patterns).



What we can do and how will it look like.

We need to realize “3D
memory”, in other words, to put
DRAM on top (or bottom) of
processor die.
We also need to change the
memory hierarchy.



Stacked DRAM with shared and distributed
arch

Shared memory: Data
move distance not
much different from
that of HBM

Distributed memory:
Data move minimized



Microbumps and Hybrid Bonding

Microbumps Hybrid Bonding



Microbump

• Extension of solder balls and “C4” bumps.

• ∼ 40µm pitch is available. In Intel MAX GPU 37µm pitch has been
used.

• Will go below 10µm in future.

• Used in all HBM memories shipped so far up to HBM3e.

• High yield is possible since we stack dies after they are cut out from
wafer.



Hybrid bonding

• Cu pad on dies are bonded through thermal process, after dies are
bonded (no adhesive or whatever is used. SiO2-SiO2 “direct bonding”)

• First used in Sony’s CMOS image sensors.

• ∼ 5µm pitch is available now.

• < 1µm will be available.

• Roughly 100x more pads can be used compared to microbumps.

• Heat resistance is quite low. “DRAM on top” structure is possible.

• Bonding process is “Wafer-on-Wafer”. So the cost should be low. How-
ever, there is no way to remove defective dies before bonding. So some
new design method which achieve near 100% yield is essential.



DRAM design image
Very large number of “small” DRAM blocks.
16x16, 32x32 etc.
Each block has its control input, address input
and data I/O pads.
Example: 100Mbit/mm2 density DRAM,
800mm2 die = 80Gbit (effective 72Gbit)
2048 36mbit blocks (with ECC). 144bit I/O. Total
pads/die = 300K. With 4 dies 1.2M pads.
500MHz data rate gives 80TB/s.
So extremely high memory bandwidth is
mechanically possible.
Question: power consumption.



Power consumption and capacity
Current goal with 3D DRAM: 0.5pJ/bit (around 1/15 of the actual power con-
sumption of HBM)
This means 80TB/s = 640 Tb/s = 320W. NVIDIA Rubin Ultra: 32TB/s, 3-4kW.
10x better than Rubin Ultra (...)
Practical problem: 4 DRAM dies of 800mm2 size gives only 36GB. We need
much more.

• Use more dies per package (possible)

• Use DRAMs with more advanced process technology (maybe in future)



How far can we go?

• With hybrid bonding very large number of pads is possible. This means
that the DRAM design can be greatly simplified.

• For example, all of the digital logic circuits on current synchronous
DRAM design could be moved to the logic die side.

• 0.1-0.2 pJ/bit is within reach (1/20 — 1/40 of HBMx)



MN-Core and 3D DRAM

• With MN-Core architecture, it is natural to add DRAM units to each PE.

• Very similar to large-scale SIMD machines like TMC CM-2 and MasPar
MP-2. So programming model will be similar. Data parallel language
like HPF (OpenACC) can be used. Cuda-like one is also possible.

• We are currently developing MN-Core L1000, the first generation LLM
processor with 3D stacked DRAM and on-chip distributed memory ar-
chitecture.



3D DRAM and HPC

• HPC applications: regular grid, irregular grid, particles, dense matri-
ces.

• irregular data structure (graphs) may be another class.

• Regular and irregular grid: fast DRAM would be of great help.

• Particles: fast DRAM would improve the performance of short-range
interaction calculation (and treecode) greatly.

(PeTar is built on top of parallel treecode (FDPS))

• matrix calculations: “Efficient” algorithms generally reduces the calcu-
lation cost by increasing the memory access cost. So fast DRAM would
help.



Programming MN-Core L1000
(This is my personal view and not the official view of Preferred
Networks)

• We should/can develop a programming environment rather
similar to that of CM-2 or Maspar MP-2.

• I hope that we will be able to make de facto standard.



Summary
• GRAPE was good because of highly specialized architec-

ture.

• Our first try to make “multi-purpose” processor, GRAPE-
DR, was not a great success, because it was not much
faster than GPUs.

• With MN-Core, we could have achieved 10x better perfor-
mance, but NVIDIA V100 adopted a similar specialized ar-
chitecture.

• With MN-Core L1000, we will introduce on-chip distributed
memory architecture, which I hope will achieve > 10x mem-
ory bandwidth.

• (With L2000, I hope to add full support for FP64.)




